博碩士論文 92221016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.204.48.199
姓名 唐巧玲(Chaio-Ling Tang)  查詢紙本館藏   畢業系所 數學系
論文名稱 布朗運動之線性和二次動向函數的同值檢定
(Homogeneous tests for linear and quadractic drift functions of brownian motions.)
相關論文
★ 定點離散核估計★ 密度函數核估計之差的極限分布及其應用
★ 密度函數的直接核估計與間接核估計★ 前二階樣本動差之函數在m相關平穩過程上之統計推論
★ 平穩過程高階動差之極限分佈及應用★ 統計模型參數和之估計
★ 隨機過程參數和之估計★ 二組件組合產品之故障率的非母數估計
★ 穩定性密度函數之核估計★ 柏努力條件下常態分布之參數估計
★ (X,Y)及max{X,Y}之分布及特徵函數之估計★ 二維品質度量之直接與間接參數估計
★ 布朗運動之雙曲正弦與雙曲餘弦變換★ 布朗運動及布阿松過程之變異數分析
★ 兩個獨立的基本Lévy隨機過程之極值過程★ 常態及二項混合模型之最大概似估計式的漸近最優性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 平均值函數(mean functions)在多維分析上的檢定是很重要的一部份,以變異數分析.共變異數分析和迴歸分析作為應用的基礎,有關這個問題的檢定在隨機過程的資料中是比較少被研究.
 在這篇論文中,我們將討論布朗運動之線性和二次動向函數的同值檢定.
摘要(英) Testing equality of mean functions is important in multivariate analysis.The application can be found in analysis of variance,analysis of covariance and regression.However,this testing problem is relatively less explored for stochastic processes datum.In this paper,we present homogeneous tests for linear quadratic drift functions of Brownian motions.
關鍵字(中) ★ 統計
★ 同值檢定
關鍵字(英) ★ homogeneous test
★ statistic
論文目次 Contents
1.Introduction.....................................................1
2.Homogeneous Tests for Linear Mean functions......................3
2.1 Homogeneous Tests for Two Parameters........................6
2.2 Homogeneous Tests for Intercepts...........................22
2.3 Homogeneous Tests for Slopes...............................31
3.Homogeneous Tests for Quadratic Mean functions..................40
3.1 Homogeneous Tests for Three Parameters.....................44
3.2 Homogeneous Tests for a and b..............................64
3.3 Homogeneous Tests for b and r..............................77
3.4 Homogeneous Tests for a and r..............................90
3.5 Homogeneous Tests for a...................................103
3.6 Homogeneous Tests for b...................................116
3.7 Homogeneous Tests for r...................................129
4.Conclusion.....................................................142
.Reference.......................................................147
參考文獻 [1] Andersen, P. K. Borgan, O. Gill, R.D. and Keiding, N.(1993). Statistical Methods
on Counting Processes. Springer-Velag.
[2] Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis. 2nd
ed. Wiley.
[3] Bosq, D.(1998). Nonparametric Statistic Stochastic Process. 2nd. ed., Lecture
Notes in Statistics 110. Springer.
[4] Basawa, I.V. and Prabhu, N.U. (1994). Statistical Inference in Stochastic Pro-
cesses. Special issue of Journal of Statistical Planning and Inference, 39.
[5] Breslow, N. E. (1970). A Generalized Kruskal-Wallis Test for Comparing K Sam-
ples Subject to Unequal Patterns of Censorship. Biometrika 57 ,579-594.
[6] Basawa, I.V. and Prakasa Rao, B.L.S. (1980). Statistical Inference for Stochastic
Processes, Academic Press, London.
[7] Billingsley, P. (1961). Statistical Inference for Markov Processes. University of
Chicago Press, Chicago.
[8] Beran, J. (1994). Statistical Methods for Long Memory Processes. Chapman and
Hall, London .
[9] Cox, D. R. and Lewis, P. A. W. (1978). The Statistical Analysis of Series of
Events. Chapman and Hall.
[10] Delgado, M.A. (1993). Testing the Equality of Nonparametric Regression Curves.
Statist. Probab. Lett.,17, 199-204.
[11] Dette, H. and Munk, A. (1998). Nonparametric Comparison of Several Regression
Functions: Exact and Asymptotic Theory. Ann. Statist.,26, 2339-2368.
[12] Dette H. and Neumeyer N. (2001). Nonparametric Analysis of Covariance. Ruhr-
UniversitÄat Bochum. Ann. Statist. Vol. 29, No. 5, 1361-1400.
[13] Fleming, T. R. and Harrington, D. P.(1991). Counting Processes and Survival
Analysis. Wiley.
[14] Guttorp, P.(1991). Statistical Inference for Branching Processes. Wiley.
[15] Gehan, E. A. (1965). A Generalized Wilcoxon Test for Comparing Arbitrarily
Singly Censored Samples. Biometrika 52 ,203-223.
[16] Grenander, U. (1981). Abstract Inference. Wiley.
[17] HÄardle, W. and Marron, J.S. (1990). Semiparametric Comparison of Regression
Curves. Ann. Statist.,18, 63-89.
[18] Hogg, R. V. and Craig, A. T. (1995). Introduction to Mathematical Statistics.
5nd ed., Prentice Hall.
[19] Klein J. P. and Moeschberger M. L. (1997). Survival Analysis. Medical College
of Wisconsin and The Ohio State University Medical Center.
[20] Kutoyants, Yu.A. (1984). Parameter Estimation for Stochastic Processes (trans.
and ed. B.L.S. Prakasa Rao), Heldermann, Berlin.
[21] Kutoyant, Y.A. (2004). Statistical Inference for Ergodic Di®usion Processes.
Spriner.
[22] King, E.C., Hart, J.D. and Wehrly, T.E. (1991). Testing the Equality of Regres-
sion Curves Using Liner Smoothers. Statist. Probab. Lett.,12, 239-247.
[23] Karr, A. F. (1991). Point Processes and their Statistical Inference. Marcel
Dekker, New York.
[24] Prakasa Rao, B.L.S. (1999a). Statistical Inference for Di®usion Type Process.
Arnold.
[25] Prakasa Rao, B.L.S. (1999b). Semimartingales and their Statistical Inference.
Chapman and Hall.
[26] Prakasa Rao, B.L.S. and Bhat, B.R. (1996). Stochastic Processes and Statistical
Inference. New Age International, New Delhi.
[27] Prabhu, N. U., ed. (1988). Statistical Inference from Stochastic Processes. (Con-
temporary Mathematics, Vol. 80 ). American Mathematical Society, Providence,
RI.
[28] Prabhu, N. U. and Basawa, I. V. (1991). Statistic Inference in Stochastic Pro-
cesses. Marcel Dekker, New York.
[29] Su, S.T. (2004). ANOVA for Constant Means of Brownian motions and Poisson
Processes. Master Thesis, National Central University.
[30] Shorack, G. and Wellner, J. A. (1986). Empirical Processes with Applications to
Statistics. Wiley.
[31] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Infer-
ence for Time Series. Springer.
[32] Tarone, R. E. and Ware, J. H. (1977). On Distribution-Free Tests for Equality
for Survival Distributions. Biometrika ,64,156-160.
指導教授 許玉生(Yu-Sheng Hsu) 審核日期 2005-6-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明