博碩士論文 92221018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.228.24.192
姓名 林意淳(Yi-Chun Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱 網格型微分方程的行進波的數值解
(Numerical Computation for Traveling Wave Solutions of Lattice Differential Equations)
相關論文
★ 遲滯型細胞神經網路之行進波★ 遲滯型細胞神經網絡行進波之結構
★ 某類網格型微分方程行波解的存在性,唯一性及穩定性★ 某類週期性網格型微分方程行波解之研究
★ 網格型動態系統行波解之研究★ 矩陣值勢能上的sofic測度
★ 在Sofic Shift上的多重碎型分析★ 某類傳染病模型微分方程行波解之研究
★ 某類三維癌症模型之整體穩定性分析★ 三種競爭合作系統之行波解的存在性
★ 離散型Lotka-Volterra競爭系統之行波解的穩定性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文主要在研究網格型微分方程的行進波的數值解。我們利用指數型遞減去逼進有限區間之外的行進解,在有限區間之內我們利用有限差分逼進解的一階微分項以及利用continuation method 去逼近輸出函數 。然後再利用牛頓法去疊代找出行進波的數值解。在論文的最後一節我們也給了一些數值圖形去驗證行進波解的存在性。
摘要(英) In this thesis, we investigate a numerical method for solving nonlinear differential-difference equations arising from the traveling wave equations of a large class of lattice di®erential equations. The pro¯le equation is
of ¯rst order with asymptotically boundary conditions. The problem is approximated via a difference scheme which solves the problem on a finite interval by applying an asymptotic representation at the endpoints and iterative techniques to approximate the speed, and a continuation method to start the procedure. The procedure is tested on a class of problems
which can be solved analytically to access the scheme’’s accuracy and stability, and applied to many lattice differential equations that models
the waves propagation in neural networks.
關鍵字(中) 關鍵字(英) ★ Traveling Wave
論文目次 Contents
˙Abstract ……………………………………………………………1
˙Introduction………………………………………………………2
˙Solution approximation…………………………………………4
˙Traveling Waves for[r, p ,s]=[1,-2,1]……………………9
˙Traveling waves for r + p + s = 0…………………………13
˙References…………………………………………………………17
參考文獻 [1] D. G. Anderson and H. F. Weinberger, Nonliner di®usion in population ge-
netics, combustion and nerve propagation, Lecture Notes in Mathematics,
446 (1975), Springer, New York, pp. 5-49.
[2] P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics
on a lattice, SIAM J. Math. Anal., 35 (2003), pp. 520-546.
[3] J. Bell, Some threshold results for models of myelinated nerves, Math.
Bioscience, 54 (1981), pp. 181-190.
[4] R. Burden, J. Faires and A. Reynolds, Numerical analysis, 2nd edn. Boston:
Prindle, Weber, Schemdit Publishers, 1981.
[5] J. W. Cahn, Theory of crystal growth and interface motion in crystalline
materials, Acta Metallurgica, 8 (1960), pp. 554-562.
[6] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, Traveling wave solutions
for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl.
Math., 59 (1999), pp. 455-493.
[7] H. Chi, J. Bell and B. Hassard, Numerical solution of a nonlinear advance
delay di®erential equation from nerve conduction theory, J. Math. Biology,
24 (1986), pp. 583-601.
[8] S.-N. Chow, J. Mallet-Paret, and W. Shen, Traveling waves in lattice dy-
namical systems, J. Diff.Eqns., 149 (1998), pp. 248-291.
[9] L. O. Chua, CNN: A Paradigm for Complexity, World Scienti¯c Series on
Nonlinear Science, Series A, Vol. 31, World Scienti¯c, Singapore, 1998.
[10] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst.,
40 (1993), pp. 147-156.
[11] L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans.
Circuits Syst., 35 (1988), pp. 1257-1272.
[12] L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE
Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
[13] H. E. Cook, D. de Fontaine, and J. E. Hilliard, A model for diffusion
on cubic lattices and its application to the early stages of ordering, Acta
Metallurgica, 17 (1969), pp. 765-773.
[14] P. Deu°hard, Stepsize control of continuation methods and its special ap-
plication to multiple shooting techniques, Numer. Math., 33 (1979), pp.
115-146.
[15] G. B. Ermentrout and N. Kopell, Inhibition-produced patterning in chains
of coupled nonlinear oscillators, SIAM J. Appl. Math., 54 (1994), pp. 478-
507.
[16] T. Erneux and G. Nicolis, Propagation waves in discrete bistable reaction-
di®usion systems, Physica D, 67 (1993), pp. 237-244.
[17] P.C. Fife and J. B. McLeod, The approach of solutions of nonlinear equa-
tions to traveling front solutions, Arch. Rat. Mech. Anal., 65 (1977), pp.
335-361.
[18] D. Hankerson and B. Zinner, Wavefronts for a cooperative tridiagonal sys-
tem of di®erential equations, J. Dyn. Diff. Eqns., 5 (1993), pp. 359V373.
[19] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Di®. Eqns., 164 (2000), pp. 431-450.
[20] C.-H. Hsu and S.-Y. Yang, Wave propagation in RTD-based cellular neural
networks, J. Di®. Eqns., 204 (2004), pp. 339-379.
[21] H. Hudson and B. Zinner, Existence of traveling waves for a generalized
discrete Fisher's equations, Comm. Appl. Nonlinear Anal., 1 (1994), pp.
23-46.
[22] M. Itoh, P. Juli¶an, and L. O. Chua, RTD-based cellular neural networks
with multiple steady states, Internat. J. Bifur. and Chaos, 11 (2001), pp.
2913-2959.
[23] J. P. Keener, Propagation and its failure in coupled systems of discrete
excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556-572.
[24] J. P. Laplante and T. Erneux, Propagation failure in arrays of coupled
bistable chemical reactors, J. Phys. Chem., 96 (1992), pp. 4931-4934.
[25] J. Mallet-Paret, The Fredholm alternative for functional di®erential equa-
tions of mixed type, J. Dyn. Di®. Eqns., 11 (1999), pp. 1-48.
[26] J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dyn. Di®. Eqns., 11 (1999), pp. 49-127.
[27] H. K. Mckean, Nagumo's equation, Adv. Math., 4 (1970), pp. 209-223.
[28] A. De Pablo and J. L. Vazquez, Traveling waves and ¯nite propagation in
a reaction-di®usion equation, J. Di®. Eqns., 93 (1991), pp. 19-61.
[29] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, Pattern formation
properties of autonomous cellular neural networks, IEEE Trans. Circuit
Syst., 42 (1995), pp. 757-774.
[30] E. Wasserstorm, Numerical solution by the continuation method, SIAM
Review, 15 (1973), pp. 89-119 .
[31] F.Werblin, T. Roska, and L. O. Chua, The analogic cellular neural network
as a bionic eye, Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
[32] B. Zinner, Existence of traveling wavefront solutions for discrete Nagumo
equation, J. Di®. Eqns., 96 (1992), pp. 1-27.
[33] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equa-
tion, SIAM J. Math. Anal., 22 (1991), pp. 1016-1020.
指導教授 許正雄(Cheng-Hsiung Hsu) 審核日期 2005-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明