博碩士論文 92222007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.191.31
姓名 顏聰文(Chung-Wen Yen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 合金金屬叢集的溫度效應
(The thermal properties of bimetallic clusters)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 介面膠體叢聚現象的理論研究
★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究★ 膠體相圖之理論計算
★ 膠體、棒狀粒子混合系統之相圖的理論分析★ 利用時間序列的統計方法研究金屬叢集的動力學
★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用了brownian-type分子動力學來分析研究合金金屬叢集的的溫度效應
這篇文章主要探討兩個議題:
其一 不同系綜在有限大系統下是否等價?
我們計算並比較Cv(比熱)和 δ(lindemann index)這兩個物理量分別在正則(本篇)和微正則(文獻)系綜的數值結果
,發現不同系綜存在著一些普適性的差異
其二 這兩個物理量再同一系綜預測溶化溫度上也出現不一致,我們試著用能量分布圖和rij來解釋背後機制,獲得非常令人滿意的結果
摘要(英) The brownian-type molecular dynamics has been
applied to study the effect of temperature on bimetallic clusters. Two specific issues are addressed. The first issue concerns the use of different ensembles in simulation of finite
systems. We make a semiquantitative comparison between the specific heat Cv and the root-mean-squared relative bond length fluctuation
parameter δ of bimetallic clusters obtained in the present canonical ensemble simulations and those by the microcanonical ensemble. Systematic
discongruity in the simulation results alludes to the inherent difference of the two ensembles for finite-sized systems. The second issue concerns the generally incomplete agreement in temperature dependences for Cv and δ. Here we make an analysis of the time evolution of the
instantaneous relative bond length fluctuation rij, where the ith and jth are two atoms judiciously selected from the cluster. We give temporal evidence that the permutational isomer transition between ij-atoms in the bimetallic cluster which contributes to δ is due to these two atoms transiting to a higher-lying isomer state and this temporal behavior
can be inferred from rij. The rij(t) therefore dictates the detail of the microscopic change in time and provides us with a means for understanding the incompatibility of δ and Cv
關鍵字(中) ★ 有限大系統
★ 分子動力學
★ 合金金屬叢集
關鍵字(英) ★ metallic cluster
★ finite system
★ ensemble difference
論文目次 Contents
I. INTRODUCTION 1
II. Computational details 3
A. Gupta-type potential 3
B. Methodology 5
III. NUMERICAL RESULTS AND DISCUSSION 8
A. Bimetallic clusters n≤ 14 9
1. Bimetallic cluster NinAlm-n : m=13 9
2. Bimetallic cluster CunAum-n : m=13 and 14 13
B. Bimetallic clusters n=38 14
1. CunAu38-n 15
2. CunAu32 15
IV. CONCLUSION 17
References 18
參考文獻 1 S. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T. G. Schaaff, J.T. Khoury,
M. M. Alvarez and R.L. Whetten, Science 280, 2098 (1998).
2 N. Toshima and T. Yonezawa, New. J. Chem. 22, 1179 (1998).
3 J.D. Aiken III, D. John and R.G. Finke, J Mol. Catal. A: Chem. 145, 1 (1999).
4 H. Bonnemann and R.M. Richards, Eur. J. Inorg. Chem. 2001, 2455 (2001).
5 F. Favier, E. C. Walter, M. P. Zach, T. Benter and R.M. Penner, Science 293, 2227 (2001).
6 M.J. L´opez, P.A. Marcos, and J.A. Alonso, J. Chem. Phys. 104, 1056 (1996).
7 C. Rey, J. Garcia-Rodeja and L.J. Gallego, Phys. Rev. B 54, 2942 (1996).
8 J. Jellinek and E.B. Krissinel, Chem. Phys. Lett. 258, 283 (1996).
9 E.B. Krissinel and J. Jellinek, Chem. Phys. Lett. 272, 301 (1997); Int. J. Quamtum Chem. 62,
185 (1997).
10 A. F. Voter and S. P. Chen, in Characterization of Defects in Materials, edited by R.W. Siegal, J.
R. Weertman, and R. Sinclair, MRS Symposia Proceedings No. 82 (Materials Research Society,
Pittsburgh, 1987), p. 175.
11 R.P. Gupta, Phys. Rev. B 23, 6265 (1981).
12 F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
13 M. Calleja, C. Rey, M. M. G. Alemany, L. J. Gallego, P. Ordej´on, D. S´achez-Portal, E. Artacho
and J. M. Soler, Phys. Rev. B 60, 2020 (1999).
14 E.F. Rexer, J. Jellinek, E.B. Krissinel, E.K. Parks and S.J. Riley, J. Chem. Phys. 117, 82
(2002).
15 J. Wang, G.H. Wang, X.S. Chen, W. Lu and J. Zhao, Phys. Rev B 66, 014419 (2002).
16 S. Darby, T.V. Mortimer-Jones, R.L. Johnston, and C. Roberts, J. Chem. Phys. 116, 1536
(2002).
17 R.A. Lordeiro, F.F. Guimar˜aes, J.C. Belchior, and R.L. Johnston, Int. J. Quantum Chem. 95,
112 (2003).
18 G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando, Phys. Rev. Lett.
93, 105503 (2004).
19 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M Tarbuck and
R.L. Jonnston, J. Chem. Phys. 122, 194308 (2005); J. Chem. Phys. 122, 194309 (2005).
20 F. Baletto, C. Mottet and R. Ferrando, Phys. Rev B 66, 155420 (2002); Phys. Rev. Lett. 90,
135504 (2003).
21 M.S. Bailey, N.T. Wilson, C. Roberts and R.L. Johnston, Eur. Phys. J. D 25, 41 (2003).
22 P.J. Hsu and S.K. Lai, J. Chem. Phys., to appear (2005).
23 G.E. Lopez and D.L. Freeman, J. Chem. Phys. 98, 1428 (1993).
24 S.P. Huang and P.B. Balbuena, J. Phys. Chem B 106, 7225 (2002).
25 Subramanian K.R.S. Sankaranarayanan, Venkat R. Bhethanabotla and Babu Joseph, Phys.
Rev. B 71, 195415 (2005).
26 K. Michaelian and I.L. Garz´on, Eur. J. D 34, 183 (2005).
27 S. K. Lai, W. D. Lin, K. L. Wu, W. H. Li and K. C. Lee, J. Chem. Phys. 121, 1487 (2004).
28 M. Bixon and J. Jortner, J. Chem. Phys. 91, 1631 (1989).
29 J.P. Hsu and S.K. Lai, J. Chem. Phys., in press (2005).
30 C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys. 112, 2301 (2000).
31 M.J. L´opez and J. Jellinek, J. Chem. Phys. 110, 8899 (1999).
32 N.T. Wilson and R.L. Johnston, J. Mat. Chem. 12, 2913 (2002).
33 F. Belatto and R. Ferrado, Rev. Mod. Phys. 77, 371 (2005).
34 N. Ju and A. Bulgac, Phys. Rev. B 48, 2721 (1993); See also Ref. 42; W. G. Hoover, Molecular
Dynamics, Lecture Note in Physics (Springer, New York, 1986), Vol. 258.
35 . H. Sloan, D. Kusnezov, and A. Bulgac, in Computational Quantum Physics, edited by A. S.
Umar, V. E. Oberacker, M. R. Strayer, and C. Bottcher, AIP Conf. Proc. No. 260 (AIP, New
York, 1992), p. 23.
36 A. Bulgac and D. Kusnezov, Phys. Rev. A 42, 5045 (1990); Phys. Rev. Lett. 68, 1335 (1992);
Phys. Rev. B 45, 1988 (1992); D. Kusnezov, A. Bulgac, and W. Bauer, Ann. Phys. (N.Y.) 204,
155 (1990); D. Kusnezov and A. Bulgac, ibid. 214, 180 (1992).
37 A. Bulgac and D. Kusnezov, Phys. Lett. A 151, 122 (1990).
38 D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
39 F. Calvo and F. Spiegelmann, J. Chem. Phys. 112, 2888 (2000).
40 Y.J. Lee, J.Y. Yaeng, E.K. Lee, B. Kim, S. Kim and K.K. Han, J. Comp. Chem. 21, 380 (2000).
41 S. Sawada and S. Sugano, Z. Phys. D 14, 247 (1989).
42 R. Werner, Eur. J. Phys. B, 43, 47 (2005).
43 E.G. Noya, J.P.K. Doye and F. Calvo, arXiv:cond-mat509334 v1, (2005).
44 G.A. Breaux, C.M. Neal, B. Cao and M.F. Jarrold, Phys. Rev. Lett. 94, 173401-1 (2005).
45 L.J. Gallego, M.J. Grimson and C. Rey, Phys. Rev. B 51, 5518 (1995).
46 C. Borgs and R. Kotecky, J. Stat. Phys. 79, 43 (1995).
47 S. Nose, J. Chem. Phys. 81, 511 (1984).
48 D.M. Deaven and K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).
49 Y. Zeiri, Comp. Phys. Comm. 103, 28 (1997).
50 C. Roberts, R.L. Johnston, N.T. Wilson, Theor. Chem. Acc 104, 123 (2000).
51 L. Zhan, B. Piwowar, W.K. Liu, P.J. Hsu, S.K. Lai and Jeff Z.Y. Chen, J. Chem. Phys. 120,
5536 (2004).
52 S.K. Lai, P.J. Hsu, K.L. Wu, W.K. Liu and M. Iwamatsu, J. Chem. Phys. 117,10715 (2002).
指導教授 賴山強(San-Kiong Lai) 審核日期 2006-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明