博碩士論文 92222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.139.72.78
姓名 陳詠翔(Yung-Hsiang Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 液滴上的彈性網絡
(Elastic network on a liquid droplet)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 生物膜黏著引發的相分離—等效膜勢與數值模擬★ 非平衡生物膜上的區塊形成
★ 受體配體叢集在外力下的理論研究★ 兩板間黏著叢集的強度
★ 粒子黏著於生物膜所引發的細胞攝入作用之物理研究★ 黏著叢集在時變外力下的強度
★ 滲透壓對單層巨型微胞的影響★ 模擬被clathrin蛋白質覆蓋的板塊狀胞吞作用
★ T細胞受體活化反應之模型★ Modeling geometrical trajectories of actin-based motility
★ 隨機布耳網路在多連線且臨界情形下的特性★ 模擬脂質雙層膜上的分子機器
★ 組織動力學之建模★ Seeking bistabilities in toy models of epithelial tissues
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討經由膠體粒子在水滴上聚結所形成的網絡對水滴的彈性強度的貢獻。 利用布朗動力學模擬來模擬膠體粒子在水滴上的聚結, 我們研究在不同大小的水滴以及不同粒子濃度上形成的網絡的彈性。 對於粒子濃度比較高的水滴, 粒子在水滴上形成對彈性有貢獻的網
絡的機率相對較高。 當粒子濃度高於某個臨界濃度時, 水滴的彈性係數增加的非常快。 雖然這個現象在一開始被認為是跟 rigidity percolation 問題有關, 但是模擬的結果卻指出膠體在水滴上的聚結其實是凝膠化過程(gelation)。 因為我們發現對於比較大的水滴, 膠體所形成的網絡在比較低的粒子濃度就可以對彈性產生貢獻, 並且經由 finite-size scaling 的分析我們推斷當水滴半徑為無限大時, 在任意有限的粒子濃度下水滴的彈性皆不為零。 類似的現象也可以在二維凝膠化過程過程中被發現。 再者, 因為這些由膠體粒子所形的的網絡的 fractal dimension 都小於2, 於是我們總結由膠體力子在水滴上形成的彈性網絡的問題屬於凝膠化過程。
摘要(英) Inspired by the experiment of the fabrication of colloidosome carried out by Dinsmore et al. [1], we are interested in the mechanical strength of the network formed by the aggregation of colloids on a water droplet. Brownian dynamics simulation is applied to simulate slippery diffusion-limited cluster aggregation (slippery DLCA) of nanoparticles on a micron-sized droplet. We study the elasticity of the network on droplets of different sizes and different surface concentration of particles. For higher
concentration of particle on the droplet, there is a greater probability for network to be formed. The elastic modulus increases rapidly after the surface concentration of the particle is greater than some critical concentration. However, we find that although this phenomenon is related to rigidity percolation problem, the simulation result actually indicates that rigidity problem of the aggregate formed by slippery DLCA of nanoparticles on a droplet belongs to a gelation problem. This is because for a larger droplet, the elastic modulus becomes nonzero at lower surface concentration
C and finite-size scaling analysis indicates that it should be nonzero at any finite C for a droplet of infinite radius. Similar behavior is also observed in gelation process in flat space. Furthermore, the fractal dimension of the aggregates formed through this simulation is smaller than 2. Therefore we conclude that rigidity problem of the aggregate formed by slippery DLCA of nanoparticles on a droplet belongs to gelation problem.
關鍵字(中) ★ 網絡
★ 彈性
關鍵字(英) ★ elastic netwrok
論文目次 Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . 3
2 Rigidity percolation 4
2.1 Percolation . . . . . . . . . . . . . . . . . . . . . 4
2.2 Rigidity percolation . . . . . . . . . . . . . . . . 6
3 Aggregation models 9
3.1 Diffusion-limited aggregation . . . . . . . . . . . . 10
3.1.1 Diffusion-limited aggregation . . . . . . . . . . . 10
3.1.2 DLA on a droplet . . . . . . . . . . . . . . . . . .12
3.2 Slippery diffusion-limited cluster aggregation. . . . 15
3.2.1 Slippery DLCA . . . . . . . . . . . . . . . . . . . 15
3.2.2 Slippery DLCA with rigid bond on a droplet . . . . 16
4 Numerical simulation 18
4.1 Slippery DLCA with rigid bond . . . . . . . . . . . . 18
4.1.1 Walk on the droplet . . . . . . . . . . . . . . . . 19
4.2 Droplet deformation . . . . . . . . . . . . . . . . . 20
4.3 Cell index and bond list. . . . . . . . . . . . . . . 21
4.3.1 Cell index . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Bond list . . . . . . . . . . . . . . . . . . . . . 23
5 Results and discussion . . . . . . . . . . . . . . . . 24
5.1 The aggregates . . . . . . . . . . . . . . . . . . . 24
5.2 Transition point . . . . . . . . . . . . . . . . . . 29
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 34
參考文獻 [1] A. D. Dinsmore et al., Science. 298, 1006, (2002).
[2] D. Stauffer and A. Aharony. Introduction to Percolation Theory, (London, Washington DC, Taylor and Francis, 1992).
[3] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, Univ.
Press, New York, 1954).
[4] P. G. de Gennes, J. Phys. (Paris)37, L-1, (1976).
[5] S. Feng and P. N. Sen, Phys. Rev. Lett. 52, 216, (1984).
[6] Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891, (1984).
[7] T. G. Mason et al., Phys. Rev. Lett. 96, 015501, (2006).
[8] D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, Phys. Rev. Lett. 54, 1416, (1985).
[9] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400, (1981).
[10] M.P. Allen and D.J. Tildesley., Computer Simulation of Liquids, (Clarendon
Press, Oxford, 1987).
[11] K. Binder and D.W. Heermann., Monte Carlo Simulation in Statistical Physics Fourth, Enlarged Edition, (Springer-Verlag, Berlin, 2002). 37
[12] R. A. L. Jones., Soft Condensed Matter, (University Press, Oxford, 2002)
[13] This method can be looked up from Computer Simulation of Liquids in section
(5.3.2), and was developed by Quentrec and Brot 1975; Hockney and Eastwood
1981.
[14] M. Kleman and O. D. Lavrentovich., Soft Matter Physics: An Introduction,
(Springer, New York, 2003).
[15] J. C. Gimel, D. Durand and T. Nicolai, Phys. Rev. B 51, 11 348, (1995).
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2007-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明