博碩士論文 92222015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.85.162.213
姓名 林正勛(Cheng-shun Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式
(Using RHEED、LEED and AES to investigate the growing situation and geometric structure of Al2O3 on NiAl(100) and Co on Al2O3/NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)★ Growth of Oxide on NiAl(100) and its Interaction with Au
★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface
★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces
★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長★ 在氧化鋁上成長金與白金的和金奈米粒子
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氧化鋁薄膜的結構和生長模式在鎳鋁合金(100)上,已經完整的被高能電子繞射儀器、低能電子繞射儀器、歐傑電子能譜儀和掃瞄穿遂式顯微鏡所研究。
氧化鋁薄膜的有序結構的生長方式,是經由氣相氧化於鎳鋁合金(100)表面上隨著a 軸和b 軸平行於[0-10]和[001]方向,可找到氧化鋁的(2×1)單胞。但是,三維奈米尺度NiAl(100)的突起物,氧化鋁和NiAl(100)的奈米粒子以偶合的形式在NiAl(100)表面上呈現;這個跡象清楚地由高能電子繞射影像中,由特別的反射穿透點在表面的反射柱上可以得知。另外,在NiAl(100)表面上的NiAl(100) 奈米粒子成長平行於(011)平面,而且(011)平面的法向量[100]平行於表面結構的[0-11] 方向。從掃瞄穿遂式顯微鏡中獲得的資料,配合上歐傑電子能譜和熱脫附實驗可以暗示出生長在鎳鋁合金上的有序結構氧化鋁會在加熱過程當中分解。另ㄧ方面,在NiAl(100)表面上,利用電化學氧化所形成的氧化鋁(2×1)厚度,接近單層氧化鋁,而且電化學氧化所形成的氧化鋁,比氣態氧化更能得到較大區域的有序結構。
此外,利用蒸鍍吸附的方式,使鈷的奈米粒子生長在氧化鋁薄膜上的行為,已經在高能電子繞射、掃瞄穿遂式電子顯微鏡和歐傑電子能譜中被研究。這個結果表示:當加熱鈷的奈米粒子時,其平均直徑分別為 2.4,3.4,5.8nm 和其平均直徑所對應高度為0.7,1.5,1.5nm。鈷的奈米粒子結構分析,可以在高能電子影像中得知,雖然這些奈米粒子有不同大小的尺寸,但是卻有相同形式的fcc 和朝著本身(001)面成形且平行鎳鋁合金(100)結構表面,這個(001)面的[110]軸平行NiAl(100)表面的[0-10]方向。最適合鈷奈米粒子的生長,是鈷的fcc(001)面,即使鈷的晶格與氧化鋁表面上的晶格有些許的不同,但是較能配合氧化鋁表面的長方形網狀結構。由於鈷奈米粒子為了配合氧化鋁表面結構和界面上晶格常數不同所形成的應力,因此鈷奈米粒子的晶格常數比fcc 的單晶晶格常數增加4-5%。影響鈷的fcc 結構排列,是來自於界面的交互作用力(晶格排列方式)和鈷(Co)-fcc 奈米粒子的較小表面自由能。
摘要(英) The growth and structures of aluminum oxides on NiAl(100) have been investigated by RHEED(reflection high energy diffraction) ,complemented by LEED (low energy electron diffraction) ,AES (Auger electron
spectroscopy) and STM (scanning tunneling microscopy).
Crystalline θ-Al2O3 phase grows through gas-phase oxidation on the NiAl(100) substrate with its a and b-axes parallel to [0-10] and [001] direction of the substrate,respectively,forming a (2 × 1) unit cell.Whilst,three-dimensional nano-sized NiAl(100) protrusions and Al2O3,NiAl (011)clusters were found to co-exit at the surface,evidenced by extraordinary transmission spots superposed to the substrate reflection rods in the RHEED patterns,particularly,the NiAl (011) clusters develop with their (011) plane parallel to the NiAl(100) surface,and [100] axis parallel to the [0-10] direction of the substrate.STM observation combined with information from AES and TPD (temperature programmed desorption) suggest the formation of these 3D structures is closely associated with partial decomposition of the crystalline oxide during annealing.On the other hand,smoother (2×1) oxide islands with thickness close to a complete monolayer of θ-Al2O3 can be formed on NiAl(100) by electro-oxidation,in contrast with the large crystalline films formed by gas-oxidation.
Moreover,the Co nanoclusters grown from vapour deposition on thin film Al2O3/NiAl(100) have been studied by reflection high energy electron diffraction (RHEED),scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES).The results show that the annealed Co nanoclusters,with mean diameters of 2.4 ,3.4 ,5.8 nm and heights of 0.7 ,1.5 ,1.5 nm respectively,are highly crystalline.Structural analysis based on the RHEED patterns indicate that these Co clusters,although with different sizes,have an fcc phase and grow with their (001) facet parallel to the NiAl(100).It is optimal growth for the Co clusters,as the Co fcc
(001) facet is to match better with the rectangular oxygen mesh of the oxide surface even though there is an appreciable lattice mismatch.The lattice constant of the Co clusters is consequently expanded by 4-5 % in comparison with that of fcc Co bulk,in order to match better with the oxide surface and minimize the interface strain.The preferential formation of the Co fcc phase is also driven by such significant interfacial interaction and perhaps a relatively smaller surface free energy of the Co-fcc clusters.
關鍵字(中) ★ 氧化鋁
★ 鈷奈米粒子
★ 電子繞射
★ 鎳鋁合金(100)
★ 電化學氧化
關鍵字(英) ★ NiAl(100)
★ Al2O3
★ AES
★ LEED
★ oxidation
★ clusters
★ RHEED
論文目次 第一章、 簡介 …………………………………………………………1
第二章、文獻閱覽
2-1、NiAl(100) …………………………………………………7
2-2、Al2O3/NiAl(100) …………………………………………10
2-3、金屬粒子在Al2O3/NiAl(100)與Al2O3/NiAl(110)………13
第三章、實驗
3-1、實驗原理與裝置
3-1-1、低能電子繞射儀(LEED) …………………………16
3-1-2、高能電子繞射儀(RHEED)…………………………23
3-1-3、歐傑電子能譜儀(AES)……………………………28
3-2、實驗儀器架構 ……………………………………………33
3-3、實驗儀器操作 ……………………………………………35
3-4、實驗步驟 …………………………………………………41
3-5、實驗藥品 …………………………………………………43
第四章、實驗結果與討論
4-1、乾淨的鎳鋁合金表面 ……………………………………44
4-2、室溫氣態佈氧 ……………………………………………47
4-3、電化學方式氧化和氣態氧化之結果與探討 ……………59
4-4、鈷(Co)在Al2O3/NiAl(100)之結果與探討 ………………62
第五章、結論…………………………………………………………70
第六章、參考文獻……………………………………………………71
參考文獻 [1] C.T. Campbell, Surf. Sci. Rep. 27 (1997) 1.
[2] C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.
[3] M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.
[4] H.J. Freund, Surf. Sci. 500 (2002) 271.
[5] M. Bäumer and H.J. Freund, Prog. Surf. Sci . 61 (1999) 127.
[6] R.M. Jaeger, K. Kuhlenbeck, H.J. Freund, M. Wuttig, W. Hoffmann, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[7] P. Gassmann, R. Franchy, H. Ibach, J. Electron Spectrosc. Relat. Phenom. 64-65 (1993) 315.
[8] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
[9] R. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[10] J. Méndez and H. Niehus, Appl. Surf. Sci. 142 (1999) 152.
[11] N. Frémy, V. Maurice, and P. Marcus. J. Am. Ceram. Soc. 86 (2003) 669.
[12] N. Frémy, V. Maurice, and P. Marcus. Surf. Interface Anal. 34 (2002) 519.
[13] W.C. Lin, C.C. Kuo, M.F. Luo, K.J. Song, and M.T. Lin, Appl. Phys. Lett. 86 (2005) 043105.
[14] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, and C.C. Kuo, 72 Nanotechnology 17 (2006) 360.
[15] C. Li, A. J. Freeman, Phys. Rev. B43 (1991) 78.
[16] A.A. Ostronkhov, V.M. Floka, V.T. Cherepin, Surf. Sci. 352-354 (1996) 919.
[17] V. Maurice, N. Frémy and P. Marcus, Surf. Sci. 581 (2005) 88.
[20] S. Wilson, J. McConnel, Solid State Chem. 34 (1980) 315.
[23] Y.W. Liao, S.H. Chang, M.F. Luo and K.J. Song, in preparation.
[29]A. P. Alivisatos, Science 271, 933 (1996).
[30]R. E. Palmer, New Sci. 2070, 38 (1996).
[31]H.-J. Freund, Surf. Sci. 500, 271 (2002).
[32]G. P. Lopinski, V. I. Merkulov and J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998).
[33]C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[36]M. Haruta, Catal. Today 36, 153 (1997).
[37]M. Valden, X. Lai and D. W. Goodman, Science 281, 1647 (1998).
[38]T. Kizuka and N. Tanaka, Phys. Rev. B 56, R10079 (1997). 73
[39]K. H. Hansen, T. Worren, S. Stempel, E. Lægagaard, M. Bäumer, H.-J. Freund, F. Besenbacher and I. Stensgaard, Phys. Rev. Lett. 83, 4120 (1999).
[40]O. Dulub, W. Hebenstreit and U. Diebold, Phys. Rev. Lett. 84, 3646 (2000).
[41]B. Pauwels, G. Van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil Kuhn, W. Bouwen and P. Lievens, Phys. Rev. B 63, 165406 (2001)
[42]Sh. K. Shaikhutdinov, R. Meyer, D. Lahav, M. Bäumer, H.-J. Freund, Phys. Rev. Lett. 91, 076102 (2003).
[43]W. C. Lin, C. C. Kuo, M. F. Luo, K. J. Song and M. S. Lin, Appl. Phys. Lett. 86, 043105 (2005).
[44]M. F. Luo, C. I. Chiang, H. W. Hsiu, S. D. Sartale and C. C. Kuo, Nanotechnol. 17, 360 (2006).
[45]M. F. Luo, C. I. Chiang, H. W. Shiu, S. D. Sartale, T. Y. Wang, P. L. Chen and C. C. Kuo, in press, J. Chem. Phys. (2006).
[46]P. Gassmann, R. Franchy and H. Ibach, Surf. Sci. 319, 95 (1994).
[48]M .S. Zei, C. S. Lin, W. H. Wei, C. I. Chiang and M. F. Luo, Surf. Sci. 600, 1942 (2006). 74
[49]N. Frémy, V. Maurice, and P. Marcus, J. Am. Ceram. Soc . 86, 669 (2003).
[50]M. S. Zei, C. S. Lin, W. H. Wei, C. I. Chiang and M. F. Luo, in preparation.
[52]M. Bäumer and H. J. Freund, Prog. Surf. Sci . 61, 127 (1999).
[57]H. J. Freund, M. Bäumer, J. Libunda, H. Kuh, T. Risse, K. A-Shamery, H. Hamann Cryst.Res.Techonl. 33 7-8 997-1008 (1998)
[58]R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf.Sci. 366, 107-120 (1996)
[59]R.-P.Blum, H. Niehus, Appl.Phys.A 66,S529 533 (1998)
[60]J. Méndez, H Niehus, Appl.Surf.Sci. 142,152-158 (1999)
[61]V. Moroz, Y. Lykhach, M. Yoshitake, The Solid Films 464, 136-140 (2004)
[62]O. Kitakami, H. Sato, Y. Shimada, F. Sato and M. Tanaka, Phys.Rev.B 56,13849 (1997)
[63]S. Gwo, C. P. Chou, C.L. Wu, Y. J. Ye, S. J. Tsai, W. C. Lin and M. T. Lin, Phy.Rev.Lett. 90 185506 (2003)
[64]Hans Lüth, Surf. And Interface of Solid
[65]Gary Attard, Colin Barnes, Surf. 75
[66]M.Prutton, Surf. Phy.
[67]M.A. Van Hove,W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction
[68]P.K. Larsen, P.J. Dobson,Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surface
[69]蘇青森著,真空技術
[70]陳文照,曾春風,游信和著,材料科學工程
[64-70]為第三章參考文獻
所有STM 影像均由實驗室同學江昭毅提供
指導教授 蔡茂盛、羅夢凡
(M. S. Zei、M.F. Luo)
審核日期 2006-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明