博碩士論文 92222024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.203.142
姓名 高德祐(Der-you Kao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 纖毛不對稱運動的模擬
(Simulated the Asymmetric Motion of Cilium)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 肥皂膜流場中圓柱體之行為研究★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論
★ 彈性懸掛棍在旋轉系統下之行為★ 膠體球在電解質溶液中的擴散泳
★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function
★ 剛體球在不對稱垂直震盪系統中的動力學行為★ Water Strider Locomotion
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 纖毛運動包含了兩種划動,一個是提供推進力的有效划動,另一個是讓纖毛回復到原位的恢復划動。根據生物學家的觀察,驅使纖毛作出這兩種划動的機制是相同的,但卻造就出兩種運動模式,這就是這本論文中我們所要探究的問題。
我們用兩根有彈性但長度不變的棍子,以虎克彈簧連接(為了讓棍子的間距不會有太大變化),再加上兩組驅使棍子滑動的力量,以對稱的結構進而模擬纖毛的不對稱運動。從模擬的結果中發現,當驅動力夠大時,只需要驅動其中一組讓棍子滑動的力量,使其作用在不同的位置,就可以觀察到兩個種類的划動。
摘要(英) Cilia are rod-like structures. They always occur in large numbers on cell surface. The primary function of a cilium is to generate fluid flow in a preferred direction. Therefore, a cilium could be used for locomotion and transportation. The bending of a cilium is caused by ATP-driven dyneins, arranged symmetrically in cilium, but they result an asymmetric beating motion.
There are two phases in the ciliary beating. One is for propelling and it is called the effective stroke. The other is for restoring the cilium to initial state and called the recovery stroke. In previous models, two groups of dyneins are proposed to drive the effective stroke and the recovery stroke respectively. They introduce asymmetric mechanism for triggering dyneins in their models. In this thesis, we show that the two strokes can be driven by dyneins in only one group and without asymmetric mechanism to trigger dyneins.
In our simulation, the cilium is modeled by two nonstretching elastic rods, connected by nexin links and drivn by triggered dyneins. The Hookean spring describe a nexin link and it lies on the local normal direction to maintain the diameter of cilium. Dyneins have two inclinations. One bends the cilium upward and the other bends the cilium downward.
Before simulating the dynamics of cilium, we investigate the steady state of cilium first. Under a small triggered force, no matter where dyneins are, the cilium responds positive curvature, and its form is similar to the effective stroke. Under a large triggered force, two different kinds of respondence are observed. When triggered dyneins are in the first half of the cilium, the cilium responds positive curvature. Its form is still similar to the effective stroke. The interesting behavior appears when triggered dyneins are in the last half of the cilium. The negative curvature occurs near the basal end, and this corresponds the recovery stroke. So, both effective and recovery strokes occur when dyneins are triggered with a large force.
The effective and recovery strokes occur in steady state when the magnitude of dynein force is large. This indicates that a complete beating cycle may be obtained with a successive variation in the locations of triggered dyneins. In the simulation, only one inclination of dyneins are triggered, and triggered dyneins propagate from the basal end to the tip of cilium. When a triggered dynein reaches the tip end, it will emerge from the basal end at the next propagating step. When the magnitude of dynein force is small, the continuous effective strokes are observed, and only beats in a small range. As the dynein force increasing, the beating range of cilium increases, and most importantly, a recovery stroke very similar to that observed in experiments is obtained.
關鍵字(中) ★ 模擬
★ 纖毛運動
關鍵字(英) ★ simulation
★ ciliary motion
論文目次 1.Introduction(7)
2.Real Cilium(15)
2.1.Ultra structure(15)
2.2.Dynamics of Cilium(17)
2.3.Ciliary group motion(19)
3.Model(20)
3.1.Simplification(20)
3.2.Equation of motion for cilium(20)
3.2.1.One doublet microtubule(21)
3.2.2.Two doublet microtubules(23)
3.3.Computational methods(25)
3.3.1.Algorithm(25)
3.3.2.Boundary conditions(27)
4.Results and Discussion(29)
4.1.Two inclinations of dynein(29)
4.2.Cilium under a fixed load(31)
4.3.Effective and recovery strokes(34)
5.Conclusion(45)
參考文獻 1.Campbell N. A., Reece J. B., Biology (Benjamin Cummings Press, San Francisco, 2002).
2.Afzelius B. A. (1961), J. Biophysic. and Biochem. Cytol., 9, 383-39.
3.Satir P. (1965), J. Cell Biol., 26, 805-834.
4.Sale W. S., and Satir P. (1977), Proc. Natl. Acad. Sci. U.S.A., 74, 2045-2049.
5.Warner F. D., and Mitchell D. R. (1978), J. Cell Biol., 76, 261-277.
6.Minoura I., Yagi T., and Kamiya R. (1999), Cell Struct. Funct., 24, 27-33.
7.Sanderson M. J., and Sleigh M. A. (1981), J. Cell Sci., 47, 331-347.
8.Sugino K., and Naitoh Y. (1982), Nature, 295, 609-611.
9.Lindemann C. B. (1993), J. Theor. Biol., 168, 175-189.
10.Goldstein R. E., and Langer S. A. (1995), Phys. Rev. Lett., 75, 1094-1097.
11.Murase M., Dynamics of Cellular Motility, (John Wiley & Sons Press, New York, 1992).
12.Morita Y., and Shingyoji C. (2004), Current Biology, 14, 2113-2118.
13.Gueron S., and Levit-Gurevitch K. (1997), Proc. Natl. Acad. Sci. U.S.A., 96, 12240-12245.
14.Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P., Numerical Recipes in Fortran (Cambridge University Press, 1992).
指導教授 陳培亮(Peilong Chen) 審核日期 2006-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明