博碩士論文 92223022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:35.172.233.2
姓名 林志柄(Chi-Ping Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 原位聚合有機無機複合發光二極體 之分散性及光性研究
(MEH-PPV and TiO2 nanotube composite PLED prepared by in-situ polymerization )
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合固態電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究中利用二氧化鈦奈米顆粒與奈米管等不同形式(different shapes)的無機奈米粒子與共軛高分子MEHPPV以原位聚合的方式形成異核結構複合材料,以利用二氧化鈦所具有之半導體性質、高介電值與其易受到光的激發後產生電子與電洞對等的性質來探討共軛高分子的發光性質。實驗中利用Sol-Gel方式將二氧化鈦製成奈米顆粒,並進一步利用強鹼處理成為奈米管與利用TEM鑑定結構,其管長約200nm、管徑約30nm。再分別與高分子發光材料MEH-PPV高分子進行混摻。以高分子鏈段成長方式帶開二氧化鈦奈米管及奈米粒子增進分散性質。利用TEM探討二氧化鈦奈米顆粒與奈米管表面在高分子內因此方式所呈現分散排列的情形。發現二氧化鈦於高分子溶液中之分散度有效率的提升。IR光譜中顯示因奈米顆粒與奈米管在有效分散下而使之與共軛高分子鏈間近距離的接觸與高度的交纏而使二者間的靜電作用力加強並進一步影響高分子鏈上苯環與碳氧鍵結的振動情形。使用UV、PL光譜探討高分子發光材料光學特性,發現共軛長度由於受到相鄰的二氧化鈦影響,而因混摻濃度不同影響共軛長度程度不同光譜會有或多或少紅位移的情形。除此,更進一步探討混摻前後導致其光學特性改變的機制。利用固態NMR探討共軛高分子形成複合物時高分子鏈的運動行為,發現在二者極為接近的情形下TiO2 奈米粒子與奈米管有效的影響高分子原本較互相纏繞的情形,而使高分子在二氧化鈦周圍運動性增加。而二氧化鈦由此方式聚合因其不同的構形對發光層表面型態造成影響,也對整個電性產生了變化。此外分析元件對整個二氧化鈦所造成的光誘導性、電荷分離性及載子再結合機率做探討,發現這些因素因為此種作法所造成有機無機空間上分佈的效應而造成對整個光電性質有先後主導及相互平衡的狀態。
摘要(英) Hybrid organic and inorganic materials are a versatile and mild approach which promises enhanced optical, electrical, mechanical thermal and chemical properties. Miscibility of the organic inorganic moieties, necessary for a homogeneous system, becomes the prime issue that challenges the preparation of these materials. This paper demonstrated in-situ polymerization is an effective mean to alleviate the miscibility issues. When the optical active moiety of MEH-PPV is polymerized in TiO2 nano tube and nano sphere suspension, they combine tightly in confined nano domain. The MEH-PPV coated on TiO2 nanotube forms staggered conformation, thus avoids close MEH-PPV stacking to form excimer. Furthermore, the semi conductive properties; high dielectric constants, and photoactive properties of TiO2 nano particle and nano tubes leads to new photo-induced/excitation mechanism. As a result, the optical properties of conjugated polymers are substantially improved. The Photo-induced and recombination processes in MEH-PPV –TiO2 nanocrystal blended structures have been studied as a function of the shape of the titania nanocrystals.
關鍵字(中) ★ 高分子發光二極體 關鍵字(英) ★ PLED
論文目次 目錄 頁次
中文摘要……………………………………………………………Ⅰ
英文摘要………………………………………………….…………… Ⅱ
謝誌……………………………………………………………………. Ⅲ
目錄……………………………………………………………………..Ⅳ
圖表目錄……………………………………………..……….……...…Ⅷ
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………...1
1-2 有機發光材料之發展過程…………………….……………...1
1-3、高分子發光二極體的起源………………………………………2
第二章 文獻回顧………………………………………………………4
2-1共軛高分子之電子結構能帶理論與發光原理………………….4
2-2有機發光二極體之元件結構…………………………………...14
第三章 實驗技術及原理………………………………………...…...18
3-1 傅立葉式紅外線吸收光譜儀(FT-IR) …………………….......18
3-1-1 應用理論…………………………………………...................18
3-1-2 FT-IR實驗操作程序……………………...............................19
3-2 穿透式電子顯微鏡………………………………….……….19
3-3 X光射線繞射(X-Ray diffraction)………………...…………...20
3-3-1 X光射線繞射實驗操作程序………………………………..21
3-4 固態核磁共振儀(Solid state NMR)應用在混摻高分子之原理……… …………………………………………………………….…... 22
3-4-1去耦合(decoupling)作用……………………….……….….23
3-4-2 魔角旋轉(Magic Angle Spinning, MAS)…………….…...24
3-4-3弛緩過程…………………………….…………………………26
3-5光性分析………………………………………...……………….28
3-5-1 紫外光-可見光吸收光譜儀(UV-vis) ………..……………28
3-5-2紫外線-可見光光譜儀(UV-Vis)實驗操作………………….30
3-5-3光激發光螢光光譜儀(Photoluminescence , PL) …………..31
3-6 共軛高分子之製備………...………………...…….………...…33
3-6-1 Poly(dialkoxy phenylene vinylene)之合成………….33
3-6-2 二氧化鈦奈米顆粒與奈米管的合成………………….35
3-6-3 摻合奈米管及奈米球以原位聚合方式成長高分子………...36
3-7 藥品………………………………………………………..……36
第四章 結果與討論………………...………………...……….……...38
4-1結構鑑定分析與性質解析……………………..………….……39
4-1-1 結晶型態與結構形貌之鑑定與分析………...……….…40
4-2 二氧化鈦奈米管分散情形………………………….......……...40
4-2-1 AFM表面分析(Morphology) ……………………..…….....…40
4-2-2 複合材料之奈米結構分析(TEM images) ….......................…41
4-3光學性質與光物理性質分析(Optical properties and physics)….44
4-3-1 紫外光-可見光光譜分析……………………………………..44
4-3-2 放光光譜分析(PL spectra) …………………………………...45
4-3-3發光二極體之能量轉移機制(Energy Transfer in Supramolecule light emitting materials) ……………………………………...48
4-4 傅立葉紅外線光譜譜儀(FT-IR)之分析研究……………….. 52
4-5固態核磁共振分析……………..…………………….……… ..55
4-5-1 CP/MAS NMR………………………………………………..55
4-6元件分析………………………………………………...……...60
4-6-1施加電壓VS電流密度…………………………………....…60
4-6-2施加電壓VS流明度…………………………………………61
4-6-3電流密度VS流明效率….........................................................62
4-6-4電流密度VS外部量子效率及流明效率.................................63
4-6-5電激發光圖...............................................................................65
4-6-6固定電流光性值.......................................................................66
第五章 總結……………………….……………………………..…..68
第六章 參考文獻……………………………………………………..71
圖目錄
Figure 2-1-1 : (a)The relationship of solvent polarity(P0) and polarity of excited molecular(P1) ; P1>P0,(b) The relationship of solvent polarity(P0) and polarity of ground state molecular(P2);P2>P0。…………………………….……11
Figure 2-1-2 : Pathway1: formation of excited singlet state for polymer,and Pathway 2: recombination of ions to form excimer.
……………………………………………………………………….… 12
Figure 2-1-3: Energy transfer mechanism of Loose bolt effect
…………………………………………………….……………….……13
Figure 3-3: Illustration of Bragg’s diffraction…………………….…… 21
Figure 3-4-2-1: The relative position between sample and magnetic field ……………………………………………...…….25
Figure 3-5-3 The principle of fluorescence absorption and emission…..31
Figure 3-5-3-1 The diagram of radiative radiation………………….......32
Figure 3-6-1 The synthesis procedure of poly(dialkoxy phenylene………
vinylene)………………………………………...………..33
Figure 4-1-1 X-ray patterns of composite material……………………..39
Figure 4-2-1 Morphology of composite material on ITO……………....41
Figure 4-1-2-1: TEM images of TiO2 nanotubes……………………….41
Figure 4-1-2-2 TEM of in-situ composite material……………………..42
Figure 4-2-2-2 Proposed morphology caused by TiO2............................43
Figure 4-3-1 UV spectrum of different ratio of TiO2 nanotube………...44
Figure 4-3-2 relative intensity of PL emission spectras (a) irradiate at…... 485nm, (b) irradiate at 340nm. ………………….………...45
Figure 4-3-2-1 Proposed distribution between MEH-PPV and TiO2 nanotubes………………………………...……………..47
Figure 4-3-3-2 (a)Absorption of DACspectrum(b)PL of DAC spectrum…………………………………………..….48
Figure 4-3-3-2 (a)Absorption of SDS spectrum(b)PL of SDS spectrum…………………………………………..….49
Figure 4-3-3-3 Relative intensity of PL emission spectras (a) DAC modified TiO2 (b) SDS modified TiO2 irradiation at 485nm…………………………………………..……….50
Figure 4-3-3-4 Compare relative intensity of irradiation of TiO2 and MEH-PPV………………………………………………50
Figure 4-3-3-5 The probable energy transfer cycle in composite………… material………………………………………………….51
Figure 4-4-1 IR spectrum of different concentration of in-situ TiO2 tubes.
………..……......................................................................52
Figure 4-4-2 IR spectrum of different concentration of in-situ TiO2 particles and tubes………………………...…………….....54
Figure 4-6-1 Diagram of Voltage VS Current…………………………… density…………………………………….……………… 60
Figure 4-6-2 Diagram of Voltage VS Luminescence…………………...61
Figure 4-6-3 Diagram of Current density VS Luminescence…….…….62
Figure 4-6-4-1 Diagram of Current Density VS External Quantum efficiency………………………………………………..63
Figure 4-6-4-2 Diagram of Current Density VS luminance Efficiency…..
…………………………………………………………..64
Figure 4-6-5-1 Diagram of EL spectrum……………………….……….65
表目錄
Table 2-1-1 the influence of substituents on fluorescence………………...
…………………………………………………………….9
Table4-4 The IR signals of pure MEH-PPV………………….…….…..54
Table:4-5-1 T1ρvalue of MEH-PPV and composite sample [MTp-5N, in-situ(different Mw)]…………………………………………………..57
Table:4-5-2 TCH value of MEH-PPV and composite sample [MTp-5N, in-situ(different Mw)] ………………………………………………….58
參考文獻 1.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys, 1963, 38, 2042.
2.B. R. Hsieh, An-Kuo Li, Macromolecules, in press
3.(a) B. R. Hsieh, W. C. Wan, Y. Yu, Y. Gao, T. E. Goodwin, S. A.
Gonzalez, W. A. Feld, Macromolecules, 1998, 31, 631.
(b) B. R. Hsieh, Y. Yu, A. C. Vanlaeken and H. Lee, Macromolecules, 1997, 30, 733.
(c) H. Antoniadis, V. E. Choog, H. Razatitrimo, Y. Gao, W. A. Feld, B.R.Hsieh, Macromolecules, 1997, 30, 6567.
(d) B. R. Hsieh, H. Antoniadis, D. C. Bland, W. F. Feld, Adv. Mater, 1995, 36.
(e) B. R. Hsieh, Y. Yu, E. W. Forsythe, G. M. Schaaf, W. A. Feld, J.Am.Chem. Soc, 1998, 120, 131.
4.T. Masuda, T. Hamano, K. Tada, M. Teraguchi, T. Masuda and K.
Yoshino, J. Appl. Phys, 1997, 36, 3740.
5.C. W. Tang, S. A. Vanslyke , Appl. Phys. Lett, 1987, 51, 913.
6.P.Kolla. Angew. Chem., Int. Ed. Engl, 1997, 36, 800.
7.Zhou,Q;Swager,T.M, J .Am.Chem.Soc, 1995, 117, 12593.
8.M. J. Winokur, Paula Wamsley, Jeff Moulton, Paul Smith, A. J. Heeger, Macromolecules, 1991, 13, 3812.
9.C. Zhang, S. Hoger, K. Pakbax, F. Wudl, A. J. Heeger, J. Elec. Mater, 1993, 22, 413.
10.C. Kittel, ”Introduction to Solid State Physics”,6th ed., John Wiley & Son, Singapore, 1986
11.T.A.Skotheim, Marcel Dekker, ”Handbook of Conducting Polymers Vol. 1&2”, New York, 1986
12.A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burroughes, R. H. Friend, N. C. Greenham, R. W. Jackson, A. Kraft, J. H. F. Martens, K. Pichler and I. D. W. Samuel, Synth. Met, 1993, 55, 4031.
13.D. R. Baigent, N.C. Greenham, J. Gruner, R. N. Marks, R. H. Friend, D. C. Moratti and A. B. Homlens, Synth. Met, 1994, 67, 3.
14.S. Saito, E. Aminaka, T.Tsutsui and M. Era, J. Lumin, 1994, 60, 902.
15.G. E. Johnson, K. M. McGrane and M. Stolka, Pure Appl. Chem, 1995, 67, 1975.
16.C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett, 1995, 66, 2679.
17.T. Tsutsui, E. I. Aminaka, Y. Fujita, Y. Hamada and S. Saito, Synth. Met, 1993, 57, 4157.
18.G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A.J. Heeger, Nature, 1992, 357, 477.
19.Scott M. Grayson, Jean M. J. Frechet, Chem. Rev, 2001, 101, 3819.
20.C. H. Chou, C. F. Shu, Macromolecules, 2002, 35, 9673.
21.K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, J. Am. Chem. Soc. Commun, 2002, 124, 11576.
22.D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, J. Am. Chem. Soc, 2001, 123, 6965.
23.Patrick R. L. Malenfant, Jean M. J. Frechet, Macromolecules, 2000, 33, 3634.
24.D. Marsitzky, R. Vesrbery, P. Blainey, B. T. Tang, J. Hawker, K. R. Carter, J. Am. Chem. Soc, 2001, 123, 6967.
25.S. Setayesh, A. C. Grimsdale, T. Weil, G. Leising, J. Am. Chem. Soc, 2001, 123, 946.
26.P. J. Flory, J. Am. Chem. Soc, 1941, 63, 3096.
27.P. J. Flory, J. Am. Chem. Soc, 1941, 63, 3083.
28.P. J. Flory, J. Am. Chem. Soc, 1941, 63, 3091.
29.P. J. Flory, J. Am. Chem. Soc, 1942, 64, 2205.
30.G. E. Jabbour, B. Kippelen, N. R.Armstrong and Peyghambarian, Appl. Phys. Lett, 1998, 73, 1185.
31.C. Zhang, S. Hoger, K. Pakbax, F. Wudl, A. J. Heeger, J. Elec. Mater, 1993, 22, 413.
32.C.L. Gettinger and A.J. Heeger, J. Chem. Phys, 1994, 101, 1673.
33.C. Zhang, S. Hoger, K. Pakbax, F. Wudl, A. J. Heeger, J. Elec. Mater, 1994, 23, 453.
34.G.Grem,G.Leditxky,B.Ullrich, G. Leising, Adv.Mater, 1992, 4, 36.
35.J. Huber, K. Mullen, J. Saleck, U. Scherf, R. Stern, Acra Polymer, 1994, 45, 244.
36.J. Gruner, P. J. Hamer, R. H. Friend, H.-J. Huber, U. Scherf, and A. B. Holmes, Adv. Mater, 1994, 6, 488.
37.M. Berggren, O. Inganas, G.Gustafsson, Nature, 1994, 372, 444.
38.F. Garten, A. R. Schatmann, Appl. Phys. Lett, 1991, 66, 2540.
39. Karg, J. C. Scott, J. R. Salem, and M. Angelopoulos, Synth. Met, 1996, 80, 111.
40. Lee, T.-W.; Kim, J.-J.; Hong, J.-M.; Kim, Y. C.; Park, O. O.;
Chem. Mater, 2001, 13, 2217.
41.王旭生「超分子發光二極體相容性、分子運動性與光性之研究」碩士論文,國立中央大學化學研究所,(2003)
42.Carter, S. A.; Scott, J. C.; Brock, P, J. Appl. Phys. Lett, 1997, 71, 1145.
43. 葉秀雲,「高分子固態電解質改進高分子發光二極體之光學特性研究」,碩士論文,國立中央大學化學研究所,(2001)。
44.Salafsky, J. S, Phys. ReV. B, 1999, 59, 10885.
45.Greenham, N. C.; Peng, X.; Alivisatos, A. P, Phys. ReV. B, 1996, 54, 17628.
46. Huynh, W. U.; Dittmer, J. J.; Teclemariam, N.; Milliron, D. J.;
Alivisatos, A. P, Phys. ReV. B, 2003, 67, 115326.
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明