博碩士論文 92224002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.221.42.164
姓名 柯旻君(Min-Chung Ko)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應
(Functional proteomic study on the metabolism and stress response of Pseudomonas putida TX2 grown on octylphenol polyethoxylates and octylphenol)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因★ Pseudomonas nitroreducens TX1中二氫硫辛醯胺脫氫酶分解辛基苯酚聚氧乙基醇之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 辛基苯酚聚氧乙基醇(octylphenol polyethoxylates、OPEOn)為一非離子性界面活性劑,使用於家庭與工業用清潔劑、保護作物之化學藥劑、化學、塑膠與紡織製業已逾四十年。OPEOn的代謝產物辛基苯酚(octylphenol、OP)普遍存在於水中且具有環境荷爾蒙之效應。而OPEOn之最終宿命以及其代謝產物還未被充分的證實。本實驗室於經常使用同類界面活性劑農田的土壤縮模,再外加OPEOn,經兩個月的馴化篩後選出Pseudomonas putida TX2,一株可有效分解利用OPEOn和OP為唯一碳源之微生物。本研究之主要目的為利用功能性蛋白質學的方法,包括一維和二維膠體電泳分離並以質譜儀鑑定出P. putida TX2分別生長於0.02%、0.5% OPEOn或、0.02% OP,再與相同濃度之succinate為對照組比較並鑑定所增生(up-regulation)或降低(down-regulation)之蛋白質,續以MALDI-Q-TOF以及ESI-MS/MS鑑定之。P. putida TX2生長於0.5% OPEOn之蛋白質體中共計有64個增生蛋白、46個降低蛋白;於0.02% OPEOn蛋白質體中共計有25個增生蛋白、16個降低蛋白;於0.02% OP蛋白質體中共計有47個增生蛋白、9個降低蛋白。P. putida TX2存在於含有0.5% OPEOn、0.02% OPEOn或0.02% OP的逆境反應之下的生理反應,大致相同,但是P. putida TX2在含有OPEOn環境下對於分解醇類化合物酵素量有增加的情況,像是在0.5% OPEOn偵測到alcohol dehydrogenase、於0.02% OPEOn 偵測到methanol dehydrogenase和benzoate 1,2 dioxygenase。本實驗室先前也利用相同的方法研究另一株可以快速代謝OPEOn卻無法利用其具有雌激素活性之代謝產物(OP)的菌株P. nitroreducens TX1。相較之下P. putida TX2或P. nitroreducens TX1存在於含有0.5% OPEOn的生理反應,其抗氧化蛋白質、保護蛋白質結構性蛋白質、熱休克蛋白、小分子運輸蛋白質、能量代謝蛋白質、胺基酸與酵素代謝蛋白質與氮代謝蛋白質的表現量均為增加表現的現象。但是,P. putida TX2在有關於胺基酸代謝機制有偵測到glutamate、histidine與methionine的代謝酵素均有被增加的現象,而P. nitroreducens TX1則為aspartate。總結來說,P. putida TX2對於OPEOn與OP的生物轉化的過程中指出,可將醇降解成醛,最有趣的是可能還有開環酵素的存在,但是,在0.02% OP並無偵測到,這是之後必須要再進一步研究的重點。
摘要(英) Octylphenol polyethoxylates (OPEOn) are nonionic surfactants that have been used for more than 40 years in household and industrial detergents, crop protection agents, chemical, plastics and textiles manufacturing. The degradation metabolites of OPEOn and octylphenol (OP) have become ubiquitous in the aquatic environment and can serve as environmental hormones. The ultimate fate of OPEOn and their metabolites is not adequately understood. A bacterial strain, Pseudomonas putida TX2, was previously isolated in the microcosm of farm soil with addition of OPEOn followed by 2 month of adaptation. It can grow effectively on 0.05%~20% OPEOn as the sole carbon source. This study was aimed to use functional proteomic approach to identify the TX2 proteins up- and down-regulated under 0.5% OPEOn, 0.02% OPEOn or 0.02% OP and the same concentration of succinate as control. 1D-SDS-PAGE and 2D-SDS-PAGE were used for protein separation, and those protein changing by more than 4-fold were identified by MALDI-Q-TOF or ESI-MS/MS. There are 64 up-regulated proteins and 46 down-regulated proteins in the proteome of P. putida TX2 grown in 0.5% OPEOn; 25 up-regulated proteins and 16 down-regulated proteins in 0.02% OPEOn, and 47 up-regulated proteins and 9 down-regulated proteins in 0.02% OP. The physiological responses of P. putida TX2 to environmental stress under 0.5% or 0.02% OPEOn and 0.02% OP are very similar. Take enzymes responsible for alcohol hydrolysis under OPEOn stress as example, the up-regulated responses in 0.5% OPEOn is alcohol dehydrogenase while in 0.02% OPEOn are methanol dehydrogenase and benzoate 1,2- dioxygenase. There is another strain named P. nitroreducens TX1 studied and cultured as previously described. P. nitroreducens TX1 also degrades OPEOn but is not able to further degrade OP, a product with estrogen activity. However, the small molecular transportation protein in 0.02% OPEOn is ABC transporter while transportation protein in 0.02% OP is outer membrane protein and branched-chain amino acid ABC transporter. Increases of protein expression under 0.5% OPEOn of both P. putida TX2 or P. nitroreducens TX1 are heat-shock proteins, protective proteins for antioxidants and structural protection as well as small transportation proteins, metabolic enzymes for protein, peptides and nitrogen. However, the main metabolic enzymes for amino acids in P. putida TX2 are glutamate、histidine and methionine but in P. nitroreducens TX1 is aspartate. The breakthrough of biodegradation in OPEOn or OP is that P. putida TX2 is able to cleave ethoxylate chain and to oxidize the alcohol terminal into aldehyde and then to carboxyl group. Also, the existence of enzyme for digesting benzene ring structure equally contributes to biodegradation in OPEOn or OP. In conclusion, the biotransformation performed by P. putida TX2 to OPEOn or OP is through the oxidation of alcohol into aldehyde. Intriguingly, enzyme responsible for benzene ring cleavage seemed to be necessary in 0.5% OPEOn, but is not detected in 0.02% OP, and which is the key for further study.
關鍵字(中) ★ 辛基苯酚聚氧乙基醇
★ 辛基苯酚
關鍵字(英) ★ octylphenol polyethoxylates
★ octylphenol
論文目次 目錄
中文摘要 I
英文摘要III
目錄V
表目錄VIII
圖目錄X
名詞縮寫對照表XIV
壹、前言1
一、蛋白質體學簡介1
二、微生物逆境中之蛋白質體學4
三、微生物分解環境污染物之蛋白質體學應用9
四、烷基苯酚聚氧乙基醇及其環境宿命14
五、烷基苯酚聚氧乙基醇及烷基苯酚之微生物分解23
六、本研究之目的33
貳、材料方法37
一、培養基與菌種品系37
二、辛基苯酚代謝產物分析38
三、蛋白質體學之聚丙烯醯胺膠與二維電泳40
四、軟體分析電泳膠體52
五、膠體內消化52
六、質譜儀分析與資料庫搜尋54
七、實驗儀器、實驗藥品56
參、結果59
一、辛基苯酚對P. putida TX2 之影響59
二、P. putida TX2 之聚丙烯醯胺膠體圖及二維電泳圖(10%
1D-SDS-PAGE;12~20% 2D-SDS-PAGE,pI 4-7)61
三、P. putida TX2 於0.5%辛基苯酚聚氧乙基醇逆境下表現量
有改變之蛋白質64
四、P. putida TX2 於0.02%辛基苯酚聚氧乙基醇逆境下表現
量有改變之蛋白質73
五、P. putida TX2 於0.02%辛基苯酚逆境下表現量有改變之
蛋白質77
六、P. putida TX2 生長於於0.02%辛基苯酚或0.02%辛基苯
酚聚氧乙基醇逆境下蛋白質體之比較82
七、P. putida TX2 生長於0.5%或0.02%辛基苯酚聚氧乙基醇
逆境下蛋白質體之比較83
八、P. putida TX2 或P. nitroreducens TX1 生長於於0.5%辛基
苯酚聚氧乙基醇逆境下蛋白質體之比較85
肆、討論87
一、P. putida TX2 攝入辛基苯酚聚氧乙基醇與辛基苯酚87
二、P. putida TX2 代謝辛基苯酚聚氧乙基醇與辛基苯酚89
伍、結論與建議94
陸、參考文獻97
表117
圖177
附錄209
參考文獻 邱凡峰。2004。以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應。國立中央大學生命科學研究所碩士論文。
洪國展。2004。分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫醯酸脫氫酶)的純化與定性。國立中央大學生命科學研究所碩士論文。
黃雪莉。2002。界面活性劑的微生物分解、微生物資源與應用研討會論文集。p.159-175。
黃雪莉、陳錫金、鄭振利、曾迪華。2002。聚乙基醇酚類界面活性劑Triton X-100在土壤中之分解作用。第二屆環境荷爾蒙及持久性有機物污染物研討會論文集。p.114-124。
謝孝正。Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇極其具雌激素活性代謝物之研究。國立中央大學生命科學研究所碩士論文。
Aguayo, S., M.J. Munoz, A. de la Torre, J. Roset , E. de la Pena, and M. Carballo. 2004. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Science of the Total Environment 328: 69-81.
Ahel, M., J. Mcevoy, and W. Giger. 1993. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in fresh-water organism. Environ. Pollut. 79: 243-248.
Ball, H.A., M. Reinhard, and P.L. McCarty. 1989. Biotransformation of halogenated and non halogenated octylphenol polyethoxylate residues under aerobic and anaerobic conditions. Environ. Sci. Technol. 23: 951- 961.
Benndorf, D., N. Loffhagen, and W. Babel. 1999. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus. Electrophoresis 20: 781-789.
Bernhardt, J., J. Weibezahn, C. Scharf, and M. Hecker. Bacillus subtilis During feast and famine: Visualization of the overallregulation ofprotein synthesis during glucose starvation by proteome analysis. Genome Research 13: 224-237.
Benz, R., and K. Bauer. 1988. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Review on the bacterial porin. Eur. J. Biochem. 176: 1-19.
Blackburn, M.A., and M.J. Waldock. 1995. Concentrations of alkylphenols in rivers and estuaries in England and Wales. Water Res. 29: 1623-1629.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brandt, K., S. Thewes, J. Overhage, H. Priefert, and A. Steinbüchel. 2001. Characterization of the eugenol hydroxylase genes (ehyA/ ehyB) from the new eugenol-degrading Pseudomonas sp. strain OPS1. Appl. Microbiol. Biotechnol. 56: 724-730.
Brigulla, M., T. Hoffmann, A. Krisp, A. Volker, E. Bremer, and U. Volker. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185: 4305-4314.
Bringmann, G., and R.Z. Kuhn. 1982. Results of toxic action of water pollutants on Daphnia magna stratus tested by an improved standardized procedure. Wasser. Abwasser. Forsch. 15: 1-6.
Brown, S.M., M.L. Howell, M.L. Vasil, A.J. Anderson, and D.J. Hassett. 1995. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J. Bacteriol. 177: 6536-6544.
Buell, C.R., V. Joardar, M. Lindeberg, J. Selengut, I.T. Paulsen, M.L. Gwinn, R.J. Dodson, R.T. Deboy, A.S. Durkin, J.F. Kolonay, R. Madupu, S. Daugherty, L. Brinkac, M.J. Beanan, D.H. Haft, W.C. Nelson, T. Davidsen, N. Zafar, L. Zhou, J. Liu, Q.P. Yuan, H. Khouri, N. Fedorova, B. Tran, D. Russell, K. Berry, T. Utterback, S.E. Van Aken, T.V. Feldblyum, M. D'Ascenzo, W.L. Deng, A.R. Ramos, J.R. Alfano, S. Cartinhour, A.K. Chatterjee, T.P. Delaney, S.G. Lazarowitz, G.B. Martin, D.J. Schneider, X.Y. Tang, C.L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100: 10181-10186.
Caldwell, D.R. 1995. Carbolic metabolism, in microbial physiology and metabolism. D.R. (ed.), Caldwell, W.C. Brown Communications. Inc., U.S.A. p.83-115.
Chang, H.W., H.Y. Kahng, S.I. Kim, J.W. Chun, and K.H. Oh. 2004. Characterization of Pseudomonas sp. HK-6 cell responding to explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Appl. Microbiol. Biotechnol. 65: 323-329.
Chang, B.V., F. Chiang, and S.Y. Yuan. 2005. Anaerobic degradation of nonylphenol in sludge. Chemosphere 59: 1415-1420.
Chapot-Chartier, M.P., C. Schouler, A.S. Lepeuple, J.C. Gripon, and M.C. Chopin. 1997. Characterization of cspB, a cold-shock- inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J. Bacteriol., 179: 5589-5593.
Chen H.J., S.L. Huang, and D.H. Tseng. 2004. Aerobic biotransformation of octylphenol polyethoxylates surfactant in soil microcosms. Environmental Technology. 25: 201-210.
Diamant, S., R. David, A. Abdussalam, E. Noa, B.Z.A. Peres, G. Pierre. 2003. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol. Microbiol. 49: 401-410.
Comber, M.H.I., T.D. Williams, and K.M. Stewart. 1993. The effects of nonylphenol on Daphnia magna. Water Res. 27: 273-276.
Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269-280.
Cook, A.M., H. Laue, and F. Junker. 1999. Microbial desulfonation. FEME Microbiology Review 22: 399-419.
Cordwell, S.J., M.R. Larsen, R.T. Cole, and B.J. Walsh. 2002. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148: 2765-2781.
Corti, A., S. Frassinetti, G. Vallini, S. D’Antone, C. Fichi, and R. Solaro. 1995. Biodegradation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl)phenol by a Cadida matltosa isolate. Environ. Pollut. 90: 83-87.
Corvini, P.F.X., R.J.W. Meesters, A. Schaffer, H.F. Schroder, R. Vinken, and J. Hollender. 2004. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl. Environ. Microbiol. 70: 6897-6900.
Crescenzi, C., A. Di Corcia, and R. Samperi. 1995. Determination of nonionic polyethoxylate surfactants in environmental waters by liquid chromatography/electrospray mass spectrometry. Anal. Chem. 6: 1797-1804.
De Angelis, M., and M. Gobbetti. 2004. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106-122.
Dejonghe, W., N. Boon, D. Seghers, E.M. Top, and W. Verstraete. 2001. Bioaugmentation of soils by increasing microbial richness: missing links. Environ. Microbiol. 3: 649-657.
Desbrow, C., E.J. Routledge, G.C. Brighty, J.P. Sumpter, and M.Waldock. 1998. Identification of estrogenic chemicals in STW effluent: 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol. 32: 1549-1558.
Di Corcia, A., C. Crescenzi, A. Marcomini, and R. Samperi. 1998a. Liquid chromatography-electrospray-mass spectrometry as a valuable tool for characterizing biodegradation intermediates of branched alcohol ethoxylate surfactants. Environ. Sci. Technol. 32: 711-718.
Di Corcia, A., A. Costantino, C. Crescenzi, E. Marinoni, and R. Samperi. 1998b. Characterization of recalcitrant intermediates of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environ. Sci. Technol. 32: 2401-2409.
Di Corcia, A., R. Cavallo, and M. Nazzari. 2000. Occurrence and abundance of dicarboxylated metabolites of nonylphenol polyethoxylate surfactants in treated sewages. Environ. Sci. Technol. 34: 3914-3919.
Dominic, M.J., and G.F. White. 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to xenoestrogens in Pseudomonas putida. J. Bacteriol. 180: 4332-4338.
Drews, Oliver., W. Weiss, G. Reil, H. Parlar, R. Wait, and A. Görg. 2002. High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2: 765-774.
Ekelund, R., A. Granmo, K. Magnusson, M. Berggren, and A. Bergnam. 1993. Biodegradation of 4-nonylphrnol in seawater and sediment. Environ. Pollut. 79: 59-61.
Elli, M., L. Morelli, and R. Zink. 2002. Seventh symposium on lLactic acid bacteria-genetics, metabolism and applications, FEMS, The Netherlands, G9.
Ferguson, P.L., C.R. Iden, and B.J. Brownawell. 2000. Analysis of alkylphenol ethoxylate metabolites in the aquatic environment using liquid chromatography-electrospray mass spectrometry. Anal. Chem. 72: 4322-4330.
Ferguson, P.L., C.R. Iden, and B.J. Brownawell. 2001. Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ. Sci. Technol. 35: 2428-2435.
Field, J. A., and R. L. Reed. 1996. Nonylphenol polyethoxy carboxylate metabolites of nonionic surfactants in us paper-mill effluents, municipal sewage-treatment plant effluents and river waters. Environ. Sci. Technol. 30: 3544-3550.
Flahaut, S., J. Frere, P. Boutibonnes, and Y. Auffray. 1996. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl. Environ. Microbiol. 62: 2416-2420.
Foran, C.M., E.R. Bennett, W.H. Benson. 2000. Exposure to environmentally relevant concentrations of different nonylphenol formulations in Japanese medaka. Mar. Environ. Res. 50: 135-139.
Fr. Schroder, H. 2001. Tracing of surfactants in the biological wastewater treatment process and the identification of their metabolites by flow injection-mass spectrometry and liquid chromatography-mass spectrometry and -tandem mass spectrometry. Journal of Chromatography 926: 127-150.
Fujii, K., N. Urano, H. Ushio, M. Satomi, and S. Kimura. 2001. Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int. J. Syst. Evol. Microbiol. 51: 603-610.
Fujii, K., R. Yamamoto, T. Tanaka, T. Hirakawa, and S. Kikuchi. 2003. Potential of a new biotreatment: Sphingomonas cloacae S-3(T) degrades nonylphenol in industrial wastewater. J. Ind. Microbiol. Biotechnol. 30: 531-535.
Fujita, Y., and M. Reinhard. 1997. Identification of metabolites from the biological transformation of the nonionic surfactant residue octylphenoxyacetic acid and its brominated analog. Environ. Sci. Technol. 31: 1518-1524.
Gabriel, F.L.P., A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, and H.P.E. Kohler. 2005. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram. ipso-hydroxylation and intramolecular rearrangement. J. Biol. Chem. 280: 15526-15533.
Giger, W., P.H. Brunnen, and C. Schaffner. 1984. 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225: 623-625.
Giger, W., M. Ahel, M. Koch, H.U. Laubscher, C. Schaffner, and J. Schneider. 1987. Behaviour of alkylphenolpolyethoxylate surfactants and of nitrilotriacetate in sewage treatment. Water Sci. Technol. 19: 449-460.
Gibson, D.T. 1993. Biodegradation, biotransformation and the Belmont. J. Ind. Microbiol. 12: 1-12.
Gibson, D.T., and V. Subramanian, 1984. Microbial degradation of aromatic hydrocarbons. In D. T. Gibson (ed.), Microbial Degradation of Organic Compounds. Marcel Dekker, Inc. New York and Basel p.181-252.
Giuffrida, M.G., E. Pessione, R. Mazzoli, G. Dellavalle, C. Barello, A. Conti, and C. Giunta. 2001. Media containing aromatic compounds induce peculiar proteins in Acinetobacter redioresistens, as revealed by proteome analysis. Electrophoresis 22: 1705-1711.
Goda,_Y., A. Kobayashi, S. Fujimoto, Y. Toyoda, K.I. Miyagawa, M. Ike, and M. Fujitac. 2004. Development of enzyme-linked immunosorbent assay for detection of alkylphenol polyethoxylates and their biodegradation products. Water Research 38: 4323-4330.
Görg, A., W. Weiss, and M. Dunn. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4: 3665-3685.
Götz, F., B. Sedewitz, and E.F. Elstner. 1980. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions. Arch. Microbiol. 125: 209-214.
Gouesbet, G., G. Jan, Boyaval, P. 2001. Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Lait 81: 301-309.
Gouesbet, G., G. Jan, and P. Boyaval. 2002. Two-dimensional electrophoresis Study of Lactobacillus delbrueckii subsp. bulgaricus Thermotolerance. Appl. Environm. Microbiol., 68: 1055-1063.
Granmo, A., R. Ekelund, K. Magnusson, and M. Berggren. 1989. Lethal and sublethal toxicity of 4-nonylphenol to the common mussel (Mytilus edulis L.). Environ. Pollut. 59: 115-127.
Guiliani, N., and C.A. Jerez. 2000. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66: 2318-2324.
Guina, T., M. Wu, S.I. Miller, S.O. Purvine, E.C. Yi, J. Eng, D.R. Goodlett, R. Aebersold, R.K. Ernst, and K.A. Lee. 2003. Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J. Am. Soc. Mass Spectrom. 14: 742-751.
Hager, L.P., D.M. Geller, and F. Lipmann. 1954. Flavoprotein- catalyzed pyruvate oxidation in Lactobacillus delbrueckii. Fed. Proc. 13: 734-738.
Hamel, R. D., and V. D. Appanna. 2001. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens. J. Inorg. Biochem. 87: 1-8.
Hansen, P.D., H. Dizer, B. Hock, A. Marx, J. Sherry, and M. McMaster. 1998. Vitellogenin-a biomarker for endocrine disruptors. Trends. Anal. Chem. 17: 448-451.
Harayama S., M. Kok, and E.L. Neidle. 1992. Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46: 565-601.
Hartke, A., J.C. Giard, J.M. Laplace, and Y. Auffray. 1998. Survival of Enterococcus faecalis in an oligotrophic microcosom: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl. Environ. Microbiol. 64: 4238-4245.
Hauthal, H.G. 1992. Trends in surfactants. Chim. Oggi. 10: 9-13.
He, J., H. Nankai, W. Hashimoto, K. Murata. 2004. Molecular identification and characterization of an alginate-binding protein on the cell surface of Sphingomonas sp. A1. Biochem Biophys Res Commun. 322: 712-717.
Hemmer, M.J., B.L. Hemmer, C.J. Bowman, K.J. Kroll, L.C. Folmar, D. Marcovich, M.D. Hoglund, N.D. Denslow. 2001. Effects of p-nonylphenol, methoxychlor, and endosulfan on vitellogenin induction and expression in sheephead minnow (Cyrinodon variegates). Environ. Toxicol. Chem. 20: 336-343.
Hideaki M., N. masuda, Y. Fujiwara, M. Ike, and M. Fujika. 1994. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Appl. Environ. Microbiol. 60: 2265-2271.
Hill, R,L,, and Jr D.M. Janz. 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquat. Toxicol. 63: 417-429.
Holcombe, G.W., G.L. Phipps, M.L. Knuth, and T. Felhaber. 1984. The acute toxicity of selected substituted phenols, benzenes and benzoic acid ester to fathead minnows Pimephales promelas. Environ. Pollut. Ser. 35: 367-81.
Huang, R.K., and C.H. Wang. 2001. The effects of two alkylphenols on vitellogenin levels in male carp. Proc. Nat. Sci. Coun.c ROC B. 25: 248-252.
Huang, S.L., and D.T. Gibson. 1993. Biochemical and genetic studies of toluene dioxygenase from Pseudomonas putida. Proceedings of Seminar on Biochemical Engineering p.39-42.
Iragashi, K, and K. Kashiwagi. 1999. Polyamine transport in bacteria and yeast. Biochem. J. 344: 633-642.
Jeenes, D.J., W. Reineke, H.J. Knackmuss, and P. A. Williams. 1982. TOL plasmid pWW0 is constructed halobenzoate-degrading Pseudomonas strain: Enzyme regulation and DNA structure. J. Biol. Chem. 150: 180-187.
Jobling, A, D. Sheahan, J.A. Osborne, P. Matthiessen, J.P. Sumpter. 1996. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem. 15: 194-202.
Jobling, S., M. Nolan, C.R. Tyler, G. Brighty, and J.P. Sumpter. 1998. Widespread sexual disruption in wild fish. Environ. Sci. Technol. 32: 2498-506.
Johnson, A.C., C. White, L. Bhardwaj, and M.D. Jurgens. 2000. Potential for octylphenol to biodegrade in some English river. Environ. Toxical. Chem. 19: 2486-2492.
Jonkers, N., T.P. Knepper and P. de Voogt. 2000. Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography–electrospray tandem mass spectrometry. Environ. Sci. Technol. 35: 335-340.
Jonkers, N. T.P. Knepper, and P. Voogt. 2001. Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography-electrospray tandem mass spectrometry. Environ. Sci. Technol. 35: 335-340.
Jonkers, N., R.W. Laane, and P. de Voogt. 2003. Fate of nonylphenol ethoxylates and their metabolites in two Dutch estuaries: evidence of biodegradation in the field. Environ. Sci. Technol. 37: 321-327.
Kawai, F., T. Kimura, Y. Tani, H. Yamada, and M. Kurachi. 1980. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl. Environ. Microbiol. 40: 701-705.
Kawai, F. 2002. Microbial degradation of polyethers. Appl. Microbiol. Biotechnol. 58: 30-38.
Kahng, H.Y., K. Cho, S.Y. Song, S.J. Kim, S.H. Leem, and S.I. Kim. 2002. Enhanced detection and characterization of protocatechuate 3,4-dioxygenase in Acinetobacter lowwffi K24 by proteomics using a column separation. Biochem. Biophys. Res. Commun. 295: 903-909.
Kellner, R. 2000. Proteomics. Concepts and perspectives. Fresenius J. Anal. Chem. 366: 517-524.
Kim, S.I., S.Y. Song, K.W. Kim, E.M. Ho, and K.H. Oh. 2003. Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Research in Microbiology 154: 697-703.
Kim, E.A., J.Y. Kim, S.J. Kim, K.R. Park, H.J. Chung, S.H. Leem, and S.I. Kim. 2004a. Proteomic analysis of Acinetobacter lwoffii K24 by 2-D gel electrophoresis and electrospray ionization quadrupole-time of flight mass spectrometry. Journal of Microbiological Methods 57: 337-349.
Kim, S.I., J.Y. Kim, S.H. Yun, J.H. Kim, S.H. Leem, and C. Lee. 2004b. Proteome analysis of Pseudomonas sp. K82 biodegradation pathway. Proteomics 4: 3610-3621.
Kinnberg, K., and G. Toft. 2003. Effects of estrogenic and antiandrogenic compounds on the testis structure of the adult guppy (Poecilia reticulata). Ecotoxicol. Environ. Saf. 54: 16-24.
Kitamura, S., M. Yoshida, K. Sugihara, S. Ohta, A. Hara. 1999. Effects of fenthion on the level of vitellogenin in goldfish, Carassius auratus. J. Health Sci. 45: 262-265.
Knauf, H.J., R.F. Vogel, and W.P. Hammes. 1992. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol. 58: 832-839.
Krayl, M., D. Benndorf, N. Loffhagen, W. Babel. 2003. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3: 1544-1552.
Kvestak, R., and M. Ahel. 1994. Occurrence of toxic metabolites from nonionic surfactants in the Krka river estuary. Ectoxic. Environ. Saf. 28: 25-34.
La Guardia, M.J., R.C. Hale, E. Harvey, and T.M. Mainor. 2001. Alkylphenol ethoxylate degradation products in land-applied sewage (Biosolids). Environ. Sci. Technol. 35: 4798-4804.
Li, M.H., and Z.R. Wang. 2005. Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata). Environ. Toxicol. 1: 53-59.
Liber, K., M.L. Knuth, and F.S. Stay. 1999. An integrated evaluation of the persistence and effects of 4-nonylphenol in an experimental littoral ecosystem. Environ. Toxicol. Chem. 18: 357-362.
Lim, E.M., S.D. Ehrlich, and E. Maguin. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557-2561.
Lim, R., S.Gale, and C. Doyle. 2000. Endocrine disrupting compounds in sewage treatment plant (STP) effluent reused in agriculture—is there a concern? In: Dillon PJ, editor. Water recycling Australia. Australia: CSIRO and AWA. p.23-28.
Lim, E.M., T. Smokvina, C. Chervaux, S.D. Ehrlich, E. Maguin. 2002. Seventh symposium on lactic acid bacteria-genetics, metabolism and applications. FEMS. The Netherlands. G85.
Lupi, C.G., T. Colangelo, and C.A. Mason. 1995. Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-chlorophenol. Appl. Environ. Microbiol. 61: 2863-2872.
Maki, H., N. Masuda, and Y. Fujiwara. 1994. Degradation of alkylphenol ethoxylates by Pseudomonas sp. Strain TR0l. Appl. Environ. Microbiol.60: 2265-2271.
Marty-Teysset, C., F. De La Torre, J.R. Garel. 2000. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress. Appl. Environ. Microbiol., 66: 262-267.
Mayo, B., S. Derzelle, M. Fernandez, C. Leonard, T. Ferain, P. Hols, J.E. Suarez, and J. Delcour. 1997. Cloning and characterization of cspL and cspP, two cold-inducible genes from Lactobacillus plantarum. J. Bacteriol. 179: 3039-3042.
McLeese, D.W., V. Zitko, C.D. Metcalfe, and D.B. Sergeant. 1980. Lethality of aminocarb and the components of the aminocarb formulation to juvenile Atlantic salmon, marine invertebrates and a freshwater clam. Chemosphere 9: 79-82.
McLeese, D.W., V. Zitko, D.B. Sargeant, L. Burridge and C.D. Metcalfe. 1981. Lethality and accumulation of alkylphenols in aquatic fauna. Chemosphere 10: 723-730.
Marquis RE, Bender GR, Murray DR, Wong A. 1987. Arginine deiminase system and bacterial adaptation to acid environments.
Appl. Environ. Microbiol. 53: 198-200.
Miyakawa, H., K. Anjitsu, N. Ishibashi, and S. Shimamura. 1994. Effects of pressure on enzyme activities of Lactobacillus helveticus LHE-511. Biosci. Biotech. Biochem. 58: 606-607.
Momma, K., W. Hashimoto, O. Miyake, H.J. Yoon, S. Kawai, Y. Mishima , B. Mikami, and K. Murata. 1999. Special cell surface structure, and novel macromolecule transport/depolymerization system of Sphingomonas sp. A1. J. Ind. Microbiol. Biotechnol. 23: 425-435.
Momma, K., M. Okamoto, Y. Mishima, S. Mori, W. Hashimoto, and K. Murata. 2000. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J. Bacteriol. 182: 3998-4004.
Momma, K., Y. Mishima, W. Hashimoto, B. Mikami, and K. Murata. 2005. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 44: 5053-5064.
Mongklsuk, S., W. Whangsuk, P. Vattanaiboon, S. Loprasert, and M. Fuangthong. 2000. A Xanthomonas alkyl hydroperoxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes. J. Bacteriol. 182: 6845-6849.
Montgomery-Brown, J., J.E. Drewes, P. Fox, and M. Reinhard. 2003. Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Research 37: 3672–3681
Mostertz, J., C. Scharf, M. Hecker, and G. Homuth. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150: 497-512.
Nelson, K.E., C. Weinel, I.T. Paulsen, R.J. Dodson, H. Hillbert, V.A. Martins dos Santos, D.E. Fouts, S.R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R.T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P.C. Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, L. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J.A. Eisen, K.N. Timmis, A. Dusterhoft, B. Tummler, and C.M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808.
Neumann, G., Y. Veeranagouda, T.B. Karegoudar, O. Sahin, I. Mausezahl, N. Kabelitz, U. Kappelmeyer, and H.J. Heipieper. 2005. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9: 163-168.
Nilsen, W.L., C. Filipe, L. Grady, JR, S. Molin, and A. Stahl. 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258.
Nishio, E., Y. Ichiki, H. Tamura, S. Morita, K. Watanabe, and H. Yoshikawa. 2002. Isolation of bacterial strains that produce the endocrine disruptor, octylphenol diethoxylates, in paddy fields. Biosci. Biotechnol. Biochem. 66: 1791-1798.
Nguyen, M.H., and J.C. Sigoillot. 1997. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation 7: 369-375.
Ochsner, U.A., D.J. Hassett, and M.L. Vasil. 2001. Genetic and physilogicol characterization of ohr, encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa. J. Baccteriol. 183: 773-778.
Okai, Y., E.F. Sato, K.H. Okai, M. Inoue. 2004. Effect of endocrine disruptor para-nonylphenol on the cell growth and oxygen radical generation in Escherichia coli mutant cells deficient in catalase and superoxide dismutase. Free Radic. Biol. Med.37: 1412-1418.
Olivera, E.R., D. Carnicero, R. Jodra, B. Minambres, B. Garcia, G.A. Abraham, G. Alberto, R.J. San, G. José L., N. Germán, L. José M. 2001. Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ. Microbiol. 3: 612-618.
Özkanca, R. and K.P., Flint. 2002. The effect of starvation stress on the porin protein expression of Escherichia coli in lake water. Letters in Applied Microbiology 35: 533-537.
Pacheco, C.C., J.F. Passos, P. Moradas-Ferreira, and P. De Marco. 2003. Strain PM2, a novel methylotrophic fluorescent Pseudomonas sp. FEMS Microbiology Letters 227: 279-285.
Palleroni, N. 1984. Family I. Pseudomonaceae. Baltimore, MD: Williams & Wilkins.
Pferdeort, V.A., T.K. Wood, and K.F. Reardon. 2003. Proteomic changes in Escherichia coli TG1 after metabolic engineering for enhanced trichloroethene biodegradation. Proteomics 6: 1066-1069.
Potter, T.L., K. Simmons, J. Wu, M. Sanchez-Olvera, P. Kostecki and E. Calabrese. 1999. Static die-away of a nonylphenol ethoxylate surfactant in estuarine water samples. Environ. Sci. Technol. 33: 113-118.
Purdom, C.E., P.A. Hardiman, V.J. Byre, N.C. Eno, C.R.Tyler, and J.P. Sumpter. 1994. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 8: 275-785.
Reardon K.F., and K.H. Kim. 2002. Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 23: 233-2241.
Renner, R. 1997. European bans on surfactant trigger transatlantic debate. Environ. Sci. Technol. 31: 316A-320A.
Rudel, R., S.J. Melly, P.W. Geno, G. Sun, and J.G. Brody. 1998. Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on cape cod, Massachusetts. Environ. Sci. Technol. 32: 861-869.
Safe. S.H., and K. Gaido. 1998. Phytoestrogens and anthropogenic estrogenic compounds. Environ. Toxicol. Chem. 17: 119-126.
Sanders, J.W., G. Vemena, and J. Kok. 1999. Environmental stress responses in Lactococcus lactis. FEMS Microbiol. Rev. 23: 483-501.
Santos, P.M., D. Benndorf, and I. Sa-Correia. 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4: 2640-2652.
Schmidt, G., C.Hertel, and W.P. Hammes. 1999. Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. System. Appl. Microbiol. 22: 321-328.
Schmidt, B., H. Patti, C. Niewersch, I. Schuphan. 2003. Biotransformation of [ring-U-14C]4-n-nonylphenol by Agrostemma githago cell culture in a two-liquid-phase system. Biotechnol. Lett. 16: 1375-1381.
Schmid, A., J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature 409: 258-268.
Schobert, M., and H. Gorisch. 2001. A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147: 363-372.
Scott, M.J., and M.N. Jones. 2000. The biodegradation of surfactants in the environment. Biochim. Biophys. Acta. 1508: 235-251.
Servos, M.R. 1999. Review of the aquatic toxicity estrogenic responses bioaccumulation of alkylphenols and alkylphenol polyethoxylate. Water Qual. Res. J. Canada. 34: 123-177.
Sekela, M., R. Brewer, G. Moyle, and T. Tuominen. 1999. Occurrence of an environmental estrogen (4-nonylphenol) in sewage treatment plant effluent and the aquatic receiving environment. Wat. Sci. Tech. 39: 217-220.
Shore, L.S., Y. Kapulnik, M. Gurevich, S. Wininger, H. Badamy, and M. Shemesh. 1995. Induction of phytoestrogen production in Medicago sativa leaves by irrigation with sewage water. Environ. Exp Bot. 35: 363-369.
Show, M.M., and B.M. Riederer. 2003. Sample preparation for two-dimensional gel electrophoresis. Proteomics 3: 1408-1417.
Smeds, A., P. Varmanen, and A. Palva. 1998. Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. J. Bacteriol.180: 6148-6153.
Smith, M.R. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191-206.
Sole, M, M.J.L. de Alda, M. Castillo, C. Porte, K. Ladegaard- Pedersen, and D. Barcelo. 2000. Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain). Environ. Sci. Technol. 34: 5076-5083.
Soto, A.M., H. Justica, J.W. Wray, and C. Sonnenschein. 1991. Paranonylphenol: an estrogenic xenobiotic released from polystyrene. Environ. Health Perspect. 92: 167-173.
Soares, A., B. Guieysse, O. Delgado, and B. Mattiasson. 2003a. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Lett. 25: 731-738.
Soares, A., B. Guieysse, and B. Mattiasson. 2003b. Biodegradation of nonylphenol in a continuous packed-bed bioreactor. Biotechnol. Lett. 25: 927-933.
Stentz, R., C. Loizel, C. Mallert, and M. Zagorec. 2000. Development of genetic tools for Lactobacillus sakei: Disruption of the ?-galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl. Environ. Microbiol. 66: 4272-4278.
Stolz, P., G. Böcker, W.P. Hammes, and R.F. Vogel. 1995. Utilization of electron acceptors by lactobacilli isolated from sourdough. I. Lactobacillus sanfranciscencis. Z. Lebensm. Unters. Forsch. 201: 91-96.
Stover, C.K., X.Q. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, M.J. Hickey, F.S. Brinkman, W.O. Hufnagle, D.J. Kowalik, M. Lagrou, R.L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L.L. Brody, S.N. Coulter, K.R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G.K. Wong, Z. Wu, I.T. Paulsen, J. Reizer, M.H. Saier, R.E. Hancock, S. Lory, and M.V. Olsen. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959-964.
Suen, W.C., and D.T. Gibson. 1993. Isolation and preliminary characterization of the subunits of naphthalene dioxygenase from Pseudomonas putida NCIB9816-4. J. Bacteriol. 175: 5877-5881.
Sugimoto, M., M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine, and F. Kawai. 2001. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J. Bacteriol. 183: 6694- 6698.
Sun, G., and E.A. Vernon. 2004. Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis 25: 959-965.
Tabira, Y., M. Nakai, D. Asai, Y. Yakabe, Y. Tahara, T. Shinmyozu, M. Noguchi, M. Takatsuki, and Y. Shimohigashi. 1999. Structural requirements of para-alkylphenols to bind to the estrogen receptor. Eur. J. Biochem. 262: 240-245.
Takasu, T., A. Iles, and K. Hasebe. 2002. Determination of alkylphenols and alkylphenol polyethoxylates by reversed-phase high-performance liquid chromatography and solid-phase extraction. Anal. Bioanal. Chem. 372: 554-561.
Tanenbaum, D.M., Y. Wang, S. Williams, and P. Sigler. 1998. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Porc. Natl. Acad. Sci. 95: 5998-6003.
Tanghe, T., M. Dhooge, and Verstraete. 1999. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbil. 65: 746-751.
Tanghe, T., M. Dhooge, and W. Verstraete. 2000. Formation of bacterial strain able to degrade branched nonylphenol. Appli. Environ. Microbiol. 65: 746-751.
Thiele, B., K. Gunther, and M.J. Schwuger. 1997. Alkylphenol Ethoxylates: Trace Analysis and Environmental Behavior. Chem. Rev. 97: 3247-3272.
Thiele, B., V. Heinke, E. Kleist, and K. Guenther. 2004. Contribution to the structural elucidation of 10 isomers of technical p-nonylphenol. Environ. Sci. Technol. 38: 3405-3411.
Timmis, K.N. 2002. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbiol. 4: 779-781.
Tremblay, L., and G. van der Kraak. 1998. Use of a series of homologus in vitro and in vivo assays to evaluate the endocrine modulating actions of beta-sitosterol in rainbow trout. Aquat. Toxicol. 43: 149-162.
Turner, M.S., T. Woodberry, L.M. Hafner, and P.M. Giffard. 1999. The bspA locus of Lactobacillus fermentum BR11 encodes an L-cystine uptake system. J. Bacteriol. 181: 2192–2198.
Ushiba, Y., Y. Takahara, and H. Ohta. 2003. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int. J. Syst. Evol. Microbiol. 53: 2045-2048.
Vallini, G., S. Frassinetti, and G. Scorzetti. 1997. Candida aquaetextoris sp. nov., a new species of yeast occurring in sludge from a textile industry wastewater treatment plant in Tuscany, Italy. Int. J. Syst. Bacteriol. 47: 336-340.
van den Belt, K., R. Verheyen, H. Witters. 2003. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicol. Environ. Saf. 56: 271-281.
van Ginkel, C.G., and G.M. Kroom 1993. Metabolic pathway for the biodegradation of octadecylbis (2-hydroxyethyl)amine. Biodegradation 3: 435-443.
van Overbeek, L.S., L.Eberl, M. Givskov, S. Molin, and J.D. van Elsas. 1995. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl. Environ. Microbiol. 61: 4202-4208.
Vasseur, C., J. Labadie, and M. Hebruad. 1999. Differential protein expression by Pseudomonas fragi submitted to various stress. Electrophoresis 20: 2204-2213.
Walker, D.C., H.S. Girgis, T.R. Klaenhammer, 1999. The groESL chaperone operon of Lactobacillus johnsonii. Appl. Environ. Microbiol. 65: 3033-3041.
Walsh, U.F., J.P. Morrissey, and F. O’Gara. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12: 289-295.
Wang, W., J.B. Sun, M. Hartlep, W.D. Deckwer, and A.P. Zeng. 2003. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechno.l Bioeng. 5: 525-536.
Washburn, M.P., and J.R. Yates, 3rd. 2000. Analysis of the microbial proteome. Curr. Opin. Microbiol. 3: 292-297.
Weeks, J.A., W.J. Adams, P.D. Guiney, J.F. Hall, and C.G. Naylor. 1996. Risk assessment of nonylphenol and its ethoxylates in U.S. river water and sediment. Royal Soc. Chem. 189: 276-291.
Wheeler, T.F., J.R. Heim, M.R. LaTorre, and B. Janes. 1997. Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J. Chromatogr. Sci. 35: 19-30.
Whited, G.M., and D.T. Gibson. 1990. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173: 3010-3016.
Wouters, J.A., J.W. Sanders, J. Kok, W.M. de Vos, O.P. Kuipers, and T. Abee. 1998. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144: 2885-2893.
Wouters, J.A., H. Frenkiel, W.M. De Vos, O.P. Kuipers, and T. Abee. 2001. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl. Environ. Microbiol. 67: 5171-5178.
Wu, S.L., H. Amato, R. Biringer, G. Choudhary, P. Shieh, and W.S. Hancock. 2002. Targeted proteomics of low-level proteins in human plasma by LC/MS: using human growth hormone as a system. J. Proteome Res. 1: 459-465.
Yamaguchi, M. and H. Fujisawa. 1980. Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J. Biol. Chem. 255: 5058-5063.
Yamashita, M., A. Tani, and F. Kawai. 2005. A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudomonas sp. strain K1. Appl. Microbiol. Biotechnol. 66: 174-179.
Yeh, W.K., D.T. Gibson, and T.N. Lin. 1977. Toluene dioxygenase: a multicomponent enzyme system. Biochem. Biophys. Res. Commun. 78: 401-410.
Yen, K.M., and I.C. Gunsalus 1985. Regulation of naphthalene catabolic genes of plasmid NAH7. J. Bacteriol. 162: 1008-1013.
Ying, G.G., B. Williams, and R. Kookana. 2002a. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ. Internat. 28: 215-226.
Ying, G.G., R.S. Kookana, Y.J. Ru. 2002b. Occurrence and fate of hormone steroids in the environment- a review. Environ. Internat. 28: 545-551.
Zink, R., C. Walker, G. Schmidt, and M. Elli. D. Pridmore, and R. Reniero. 2000. Impact of multiple stress factors on the survival of dairy lactobacilli. Sci. Aliments. 20: 119-126.
Zylstra, G.J., and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264: 14940-1494
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2005-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明