博碩士論文 92224011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.158.47
姓名 黃凱民(Kai-min Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控
(Myogenic basic helix-loop-helix transcription factors regulate PGC-1α during terminal myogenic differentiation)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ KLHL17在癲癇與自閉症中之角色
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ FoxOs 大量表現對肌肉細胞末期分化的影響★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現
★ Oc4和Nanog共同抑制末端肌肉分化★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 成熟肌肉細胞一般分為兩種型態,第一型慢速收縮肌跟第二型快速收縮肌。在慢速收縮肌中,我們發現含有大量粒線體,因此可以藉由氧化電子傳遞鏈提供大量ATP提供人體生存所需的能量,反觀,快速收縮肌在能量代謝方面比較偏向醣解代謝,在外觀上,因為慢速收縮肌含有多血紅蛋白所以比較偏向紅色。目前我們知道PPAR-γ輔助轉錄因子PGC-1α在肌肉纖維的決定上有莫大關鍵性,而成體上主要表現在慢速收縮肌中。而之前文獻指出,轉殖鼠系統中,若過量表現PGC-1α在肌肉細胞中,會使得肌肉細胞走向慢速肌肉的趨勢,從之前觀察,我們知道在PGC-1α啟動子區有兩個非常保留E-box(CANNTG),較轉錄起始點遠的E-box我們稱為E1-box,較轉錄起始點近的E-box稱為E2-box,由之前觀察我們知道MyoD 活化PGC-1α時,是藉由直接結合於PGC-1α啟動區的E2-box。藉由生物資訊分析另一個E-box是可能被Stra13所結合。從promoter assay,我們知道Stra13會抑制MyoD所主導PGC-1α的活化,而可能藉由的方式是經由跟MyoD競爭coactivator-P/CAF,而導致MyoD活化PGC-1α有所被抑制。
摘要(英) Skeletal muscle are generally classified as two types – type I (slow - twitch) and type II (fast - twitch). The former is rich in mitchondria and thus provides constant ATP through oxidative metabolism. The latter depends on the glycolytic metabolism as the energy source. PGC-1α is a transcriptional coactivator mainly expressed in the slow-twitch fibers. Previous studies indicated that over-expression of PGC-1α promotes the conversion from fast-twitch fibers to slow-twitch fibers. According to previous observations, we know that the E2-box on the PGC-1α promoter is essential for MyoD-mediated transactivation. In this study, we found that Stra13, a putative E1-box binding transcriptional repressor, repressed the MyoD mediated PGC-1α promoter activation. The interaction between MyoD and Stra13 was almost undetectable by GST-Pull down assay and EMSA. In addition, over-expression of P/CAF, but not CBP, can rescue the Stra13-mediated repression. These data suggest that Stra13 represses MyoD-mediated PGC-1 activation by sequestering P/CAF from MyoD.
關鍵字(中) ★ 過氧化物酶增殖體激活受體γ共激活蛋白1
★ 慢速收縮肌
關鍵字(英) ★ Stra13
★ PGC-1α
★ P/CAF
★ MyoD
★ slow-twitch muscle fiber
論文目次 聲明(Declaration) I
中文摘要 III
Abstract IV
誌 謝 V
目 錄 VI
圖索引 X
表索引 XI
縮寫對照XII
第一章 緒論 1
1.1 肌纖維 1
1.2 PGC-1 ( peroxisome proliferative activated receptor, gamma, oactivator 1) family 3
1.2.1 PGC-1α 3
1.2.2 PGC-1β 5
1.2.3 PRC (peroxisome proliferative activated receptor, gamma, coactivator-related 1) 6
1.3 Stra13 7
1.4 研究動機與目的 8
第二章 材料與方法 10
2.1 細胞株 10
2.1.1 細胞培養 10
2.2 菌株 10
2.2.1 菌株培養 10
2.2.2 菌株保存 11
2.3 基本選殖技術 11
2.3.1 大腸桿菌勝任細胞之製備(Preparation of E. coli competent cells) 11
2.3.2 大腸桿菌的轉型作用 (Transformation) 11
2.3.3 質體DNA的少量製備 (Mini-preparation) – 用鹼處理法(Alkaline lysis method) 12
2.4 構築PGC-1 family promoter 12
2.4.1 Primer 設計 12
2.4.2 巢式聚合酶鏈反應 (nested Polymerase Chain Reaction, PCR) 13
2.4.3 PCR 條件 13
2.4.4 TA cloning 14
2.4.5 插入(Insert) DNA的純化 14
2.4.6 載體DNA的製備 15
2.4.7 載體DNA限制酶的剪切 16
2.4.8 載體DNA的5’端去磷酸根反應 16
2.4.9 載體DNA的純化 16
2.4.10 接合反應 ( Ligation ) 17
2.4.11 篩選 (Screening) 17
2.5 PGC-1 family promoter assay 17
2.5.1 Transfection 17
2.5.2 螢火蟲冷光活性方法 18
2.5.3 水母冷光活性方法 18
2.6 PGC-1α與蛋白質之交互作用 18
2.6.1 探針(probe)製備 18
2.6.2 探針的標定(labelling) 19
2.6.3 探針的純化 19
2.6.4 Binding assay 20
2.7 蛋白質純化 21
2.7.1 轉型作用 21
2.7.2 蛋白質表現及存化 21
2.7.3 蛋白質析出 21
2.8 蛋白質標定 22
2.9 GST-pull down assay 22
2.10 Competition assay 23
2.11 建立穩定表現Stra13及PGC-1αpromoter activity細胞株 23
2.11.1 細胞培養 23
2.11.2 轉染作用 23
2.11.3 挑single clony 24
2.11.4 構築pPYCAGIP-Stra13 24
2.11.5 Over-expression Stra13 C2C12建立 24
2.12 RT-PCR 25
2.12.1 Total RNA的抽取 25
2.12.2 反轉錄酶反應(Reverse Transcriptase, RT) 25
2.12.3 以PCR辨別PGC-1 family 在C2C12及Sol8表現 26
2.13 Real-time PCR 26
2.14 Western blotting 26
2.14.1 Stripping 27
第三章 結果 28
3.1 利用RT-PCR 觀察C2C12 及Sol8中PGC-1 family 的表現型態 28
3.2 觀察Stra13對於PGC-1 family的調控 29
3.3 Stra13對於MyoD 下游基因的調控方式 30
3.4 E-box對於MyoD活化PGC-1α是必要的,而Stra13是藉由E2 box達到抑制效果 30
3.5 探討MyoD及Stra13蛋白質和PGC-1α promoter 之間的作用關係 31
3.6 探討MyoD和Stra13之間交互作用關係 31
3.7 Stra13藉由與MyoD競爭coactivator達到抑制MyoD的活化倍率 32
3.8 建立overexpression-Stra13 PGC-1αpromoter stable clone 34
第四章 討論 36
第五章 結論 41
第六章 圖表 42
縮寫對照 62
參考文獻 63
Retrovirus製備的實驗流程圖 67
附錄一 68
附錄二 72
附錄三 73
藥品試劑 74
酵素和限制酶 74
參考文獻 1. Berchtold, M.W., Brinkmeier, H. & Muntener, M. Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease. Physiol. Rev. 80, 1215-1265 (2000).
2. Yan, Z., Serrano, A.L., Schiaffino, S., Bassel-Duby, R. & Williams, R.S. Regulatory Elements Governing Transcription in Specialized Myofiber Subtypes. J. Biol. Chem. 276, 17361-17366 (2001).
3. Yagami-Hiromasa, T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652-656 (1995).
4. Molkentin, J.D., Black, B.L., Martin, J.F. & Olson, E.N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-1136 (1995).
5. Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010-1026 (1997).
6. Abraham, S.E., Lobo, S., Yaciuk, P., Wang, H.G. & Moran, E. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8, 1639-47 (1993).
7. Rupp, R.A.W., Singhal, N. & Veenstra, G.J.C. When the embryonic genome flexes its muscles. Chromatin and myogenic transcription regulation. European Journal of Biochemistry 269, 2294-2299 (2002).
8. Puigserver, P. et al. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell 92, 829-839 (1998).
9. Puigserver, P. et al. Activation of PPAR Coactivator-1 Through Transcription Factor Docking. Science 286, 1368-1371 (1999).
10. Knutti, D., Kressler, D. & Kralli, A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. PNAS 98, 9713-9718 (2001).
11. Puigserver, P. & Spiegelman, B.M. Peroxisome Proliferator-Activated Receptor-{gamma} Coactivator 1{alpha} (PGC-1{alpha}): Transcriptional Coactivator and Metabolic Regulator. Endocr Rev 24, 78-90 (2003).
12. Puigserver, P. et al. Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPAR[gamma] Coactivator-1. Molecular Cell 8, 971-982 (2001).
13. Teyssier, C., Ma, H., Emter, R., Kralli, A. & Stallcup, M.R. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19, 1466-73 (2005).
14. Lin, J. et al. Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
15. Naya, F.J. et al. Stimulation of Slow Skeletal Muscle Fiber Gene Expression by Calcineurin in Vivo. J. Biol. Chem. 275, 4545-4548 (2000).
16. Michael, L.F. et al. Restoration of Insulin-Sensitive Glucose Transporter (GLUT4) Gene Expression in Muscle Cells by the Transcriptional Coactivator PGC-1. Proceedings of the National Academy of Sciences of the United States of America 98, 3820-3825 (2001).
17. Chin, E.R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499-2509 (1998).
18. Russell, A.P. et al. Endurance Training in Humans Leads to Fiber Type-Specific Increases in Levels of Peroxisome Proliferator-Activated Receptor-{gamma} Coactivator-1 and Peroxisome Proliferator-Activated Receptor-{alpha} in Skeletal Muscle. Diabetes 52, 2874-2881 (2003).
19. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J.D. Transcriptional coactivator PGC-1[agr] integrates the mammalian clock and energy metabolism. Nature 447, 477-481 (2007).
20. Rodriguez-Calvo, R. et al. PGC-1{beta} Down-Regulation Is Associated With Reduced ERR{alpha} Activity and MCAD Expression in Skeletal Muscle of Senescence-Accelerated Mice. J Gerontol A Biol Sci Med Sci 61, 773-780 (2006).
21. Monsalve, M. et al. Direct Coupling of Transcription and mRNA Processing through the Thermogenic Coactivator PGC-1. Molecular Cell 6, 307-316 (2000).
22. Andersson, U. & Scarpulla, R.C. PGC-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells. Mol. Cell. Biol. 21, 3738-3749 (2001).
23. Freiman, R.N. & Herr, W. Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP. Genes Dev. 11, 3122-3127 (1997).
24. Boudjelal, M. et al. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明