博碩士論文 92224018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.173.112
姓名 王亮晴(Lian-Chin Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位
(The effects of HIT1, a vesicle tethering factor homolog, on tip growth and the raw mapping of hit2 locus in Arabidopsis.)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制
★ 阿拉伯芥突變種hit2之位址定位★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究
★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位
★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗室之前應用功能性遺傳學的方法 (functional genetics approach),以ethyl methanesulfonic acid (EMS)為突變劑,篩選出一對高溫逆境過度敏感之阿拉伯芥突變植株,命名為hit1-1 (heat intolerance)。此基因座落於阿拉伯芥第一條染色體上,為一未曾被研究過的基因。從HIT1 cDNA對應之氨基酸所作的序列比對得知,其N端與酵母菌之Vps53p相似。酵母菌之Vps53p 為囊胞繫鍊蛋白,可與Vps52p及Vps54p結合成複合體以調節囊胞的運輸。缺乏Vps53p的酵母菌突變株,對熱逆境亦會失去耐受性。本研究先利用互補實驗,顯示出阿拉伯芥HIT1能改善酵母菌Δvps53突變株,對37℃高溫的耐受性。為進一步探究HIT1基因的功能及生理意義,本研究接著利用HIT1之啟動子(promoter)與β-glucuronidase (GUS) 報導基因相連,觀察HIT1在植物組織中表現情形。結果顯示HIT1主要在根尖伸長區、成熟的花葯及花粉管中表現。此外,已知阿拉伯芥中的POK (poky pollen tube) 蛋白質與酵母菌中的Vps52p為同源蛋白質,同時也控制花粉管的伸長。由於POK基因被T-DNA 插入進行篩選pok 突變株的時候,無法找到純合子 (homozygous) (Lobstein et al., 2004) ,而hit1 基因在進行T-DNA插入篩選突變株時,也一樣找不到純合子。本研究於是觀察花粉管在in vitro中之生長情形,發現當HIT1被T-DNA插入而失去功能時,其花粉管的生長會受到限制。由於花粉管與根毛的生長方式均屬尖端生長的一種,本研究也觀察hit1-1花粉管與根毛的生長。結果顯示hit1-1花粉管與根毛的長度,都較野生型短。綜合以上結果,HIT1在阿拉伯芥有可能是調節囊胞運輸之分子。而其所調節之囊胞運輸,對植物熱逆境之耐受性及尖端生長有決定性的角色。此外,為能更了解植物耐受高溫的生理機制及其他遺傳控制因子,繼hit1突變種的研究之後,本研究另進行hit2突變株之基因定位,目前已知其坐落在第5條染色體,AGI map 4700-5700 kb之範圍內。
摘要(英) Using the functional genetics approach, we have isolated an ethyl methanesulfonic acid (EMS)-mutagenized Arabidopsis heat hypersensitivity mutant named hit1-1 (heat intolerance). The HIT1 locus was located on chromosome I. Amino acid sequence analysis showed that HIT1 is homologous to yeast Vps53p. It has been shown that yeast Vps52p Vps53p and Vps54p can form a tethering complex to mediate vesicle trafficking. The growth of yeast vps53∆ mutant is inhibited at 37℃ compared to that of wild-type. Transformation of a plasmid DNA carrying the HIT1 gene into yeast vps53∆ mutant was able to improve the retarded growth at 37℃. In order to further investigate the physiological function of HIT1, we also used HIT1 promoter driven β-glucuromidase (GUS) reporter gene to observe the expression pattern of HIT1 in plant. Results showed that HIT1 is expressed specifically at the elongation zone of root, stigma, mature anther and pollen tube. On the other hand, Arabidopsis POK (poky pollen tube) gene whose product is homologous to yeast Vps52p has been shown to be required for effective pollen tube growth. T-DNA insertional mutants of both pok and hit1-2 can not be isolate homozygously. Development of hit pollen tube was therefore examined. Results showed that only 50% of the pollens from hit1-2 mutant can develop pollen tube. Moreover, while all the pollens from hit1-1 can develop pollen tube, the average length of the tube is remarkably shorter than that from wild type. Since the elongations of pollen tube and root hair all belong to tip growth, the development of root hairs of hit mutants was also observed. Again, result showed that the length of root hairs from hit1-1 is shorter than that from wild type. Collectively, it is suggested that the HIT1 gene product is a vesicle tethering factor and has crucial roles in plant tip growth and stress tolerance. In the meantime, a second EMS-mutagenized heat intolerant mutant, hit2, was isolated from Arabidopsis. The locus of the hit2 was currently mapped to be at the chromosome IV between 4700kbp and 5700kbp on the AGI map.
關鍵字(中) ★ 繫鏈同源蛋白
★ 頂端生長
★ 熱耐受基因
★ 遺傳定位
★ 阿拉伯芥
關鍵字(英) ★ mapping
★ tip growth
★ vesicle tethering factor
★ HIT2
★ HIT1
論文目次 中文摘要 I
ABSTRACT II
目錄 III
圖表目錄 V
前言 - 1 -
材料與方法 - 8 -
一、異種間互補試驗 - 8 -
1). pRS313-HIT1質體之構築 - 8 -
2). 酵母菌之細胞轉型 - 10 -
3). 互補試驗(complementation) - 12 -
二、HIT1基因在植物細胞中的表現位置 - 12 -
1). 建構HIT1綠色螢光融合蛋白質體 - 13 -
2). 阿拉伯芥原生質體之抽取 - 14 -
3). 阿拉伯芥原生質體之轉型( transfection ) - 15 -
4). 綠色螢光蛋白影像分析 - 15 -
三、HIT1基因在植物組織中的表現位置 - 16 -
1). 建構HIT1啟動子與報導基因質體 - 16 -
2). 農桿菌勝任細胞之製備 - 18 -
3). 農桿菌之轉型 - 18 -
4). 阿拉伯芥轉殖與篩選 - 19 -
5). GUS組織化學染色(GUS staining) - 20 -
四、HIT1基因對雄配子生長發育的影響 - 20 -
1). 突變株hit1之雄配子體於載玻片上發育之情形 - 20 -
2). hit1-2突變株雄配子體在活體上的發育 - 21 -
3). 根毛生長表形 - 22 -
五、HIT2基因之選殖 - 22 -
1). 阿拉伯芥總DNA之萃取 - 22 -
2). Genomic DNA 之萃取緩衝液 - 23 -
3). 鑑定突變種之顯、隱性 - 23 -
4). 製備定位時所需之hit2突變株 - 23 -
3). 以生態型專一性的基因標記定位出hit2的突變位址 - 24 -
結果與討論 - 27 -
一、異種間互補試驗 - 27 -
二、HIT1基因功能推測 - 27 -
1). HIT1基因在細胞中之分佈位置 - 27 -
2). HIT1基因於植物組織之表現情形 - 28 -
三、HIT1基因突變對雄配子體生長發育之影響 - 30 -
1). In vitro - 30 -
2). In vivo - 31 -
3). 根毛的生長情形 - 31 -
四、以遺傳圖譜為基礎之基因選殖(map-based cloning, MBC) - 32 -
參考文獻 - 34 -
參考文獻 Bassham, D.C., Sanderfoot, A.A., Kovaleva, V., Zheng, H., and Raikhel, N.V. (2000). AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell. 11:2251-65.
Bell, C.J. and Ecker, J.R. (1994). Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 19:137-44
Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C., Grandjean, O., and Bouchez, D. (2002). The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell. 14:833-45
Cheung, A.Y., Chen, C.Y-h., Glaven, R.H., Graaf, B.H.J.de, Vidali, L., Hepler, P.K., and Wu,H.M. (2002). Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and is important to pollen Tube Growth. Plant Cell 14:945-962
Conibear, E. and Stevens, T.H. (2000). Vps52p, Vps53p, and Vps54p Form a Novel Multisubunit Complex Required for Protein Sorting at the Yeast Late Golgi. Mol. Biol. Cell 11:305-323
Conibear, E., Cleck, J.N. and Stevens, T.H. (2003). Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p. Mol. Biol. Cell 14: 1610-1623
Dolan, L. (2001). How and where to build a root hair. Curr Opin Plant Biol. 4:550-554
Dolan, L., Duckett, C.M., Grierson, C., Linstead, P., Schneider, K., Lawson, E., Dean, C., Poethig, S., and Roberts, K. (1994). Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120: 2465-2474
Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., and Scheres, B. (1993). Cellular organisation of the Arabidopsis thaliana root. Development. 119:71-84.
Foreman, J. and Dolan, L. (2001). Root Hairs as a Model System for Studying Plant Cell Growth. Annals of Botany 88:1-7
Franklin-Tong, V.E. (1999). Signaling in pollination. Plant Biol. 2:490-495
Galway, M.E., Heckman, J.W., Jr, Schiefelbein, J.W. (1997). Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201:209-218
Gething, M.J. (1997). Protein folding. The difference with prokaryotes. Nature. 388:343-349
Gilroy, S. and Jones, D.L. (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5:56-60.
Glazebrook, J., Drenkard, E., Preuss, D., and Ausubel, F.M. (1998). Use of cleaved amplified polymorphic sequences (CAPS) as genetic markers in Arabidopsis thaliana. Methods Mol Biol. 82:173-82
Hendrick, J.P. and Hartl, F. (1993). Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 62:349-84
Hong, S.W., and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. PNAS 97:4392-4397
Inaba, T., Nagano, Y., Nagasaki, T., and Sasaki, Y. (2002) Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem. 277:9183-8.
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis Map-Based Cloning in the Post-Genome Era. Plant Physiol. 129:440-450
Jinag, L., Ynag, S.L., Xie, L.F., Puah, C.S., Zhang, X.Q., Yang, W.C., Sundaresan, V. and Ye, D. (2005). VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. Plant Cell 17: 584-596
Johnson, B.S.A. and McCormick, S. (2004). A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J. 39:761-775
Jones, M.A., Shen, J.J., Fu, Y., Li, H., Yang, Z., and Grierson, C.S. (2002). The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell. 14:763-776
Kahn, R.A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L., and Rothman, J.E. (1992). The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem. 267:13039-46
Konieczny, A. and Ausubel, F.M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4:403-10
Larkindale, J., Hall, J.D., Knight, M.R. and Vierling, E. (2005). Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance. Plant Physiol. 138:882-897
Lee, C. F., Pu, H. Y., Wang, L. C., Sayler, R. J., Yeh, C. H., and Wu, S. J. (2006). Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta, 224:330-338
Levine, A. (2002) Regulation of stress responses by intracellular vesicle trafficking. Plant Physiol Biochem. 40:531-535.
Li, H., Lin, Y., Heath, R.M., Zhu, M.X., and Yang, Z. (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731–1742.
Lobstein, E., Guyon, A., Ferault, M., Twell, D., Pellletier, G., and Bonhomme, S. (2004). The putative Arabidopsis homolog of yeast Vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol. 135: 1480 – 1490
Lowe, M. (2000). Membrane transport: Tethers and TRAPPs. Current Biol. 10:R407-R409
Mascarenhas, J.P. (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell. 5:1303-1314
Mazel, A., Leshem, Y., Tiwari, B.S. and Levine, A. (2004). Induction of Salt and Osmotic Stress Tolerance by Overexpression of an Intracellular Vesicle Trafficking Protein AtRab7 (AtRabG3e). Plant Physiol.134:118-128
Molendijk, A.J., Bischoff, F., Rajendrakumar, C.S.V., Friml, J., Braun, M., Gilroy, S., and Palme, K. (2001). Arabidopsis thaliana Rop GTPases are localized to tips of root hair and control polar growth. EMBO J. 20:2779-2788
Moyer, B.D., Allan, B.B., and Balch,W.E. (2001). Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic. 2:268–276
Murphy, A.S., Bandyopadhyay, A., Holstein, S.E., and Peer, W.A. (2005). Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56: 221–251
Ovečka, M., Lang, I., Baluška, F., Ismail, A., Illeš, P., and Lichtscheidl, I. K. (2005).Endocytosis and vesicle trafficking during tip growth of root hairs Protoplasma. 226:39-54
Pfeffer, S. R. (1999), Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1:E17-E22
Peters, J.L., Cnudde, F., and Gerats, T. (2003). Forward genetics and map-based cloning approaches. Trends Plant Sci. 8:484-491
Procissi, A., Guyon, A., Pierson, E.S., Giritch, A., Knuiman, B., Grandiean, O., Tonelli, C., Derksen, J., Pelletier, G., and Bonhomme, S. (2003). KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 36:894-904
Radin, J.W., Rercy, R.G., and Zeiger E. (1994). Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc Natl Acad Sci U S A. 15:7217-7221
Reggiori, F., Wang, C.W., Stromhang, P.E., Shintani, T., and Klionsky, D.J. (2003). Vps51 Is Part of the Yeast Vps Fifty-three Tethering COMPLEX essential for retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. J. Biol. Chem. 278: 5009 – 5020
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134:1683-96
Sanderfoot, A.A., Assaad, F.F., and Raikhel, N.V. (2000). The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 124:1558-69
Sanderfoot, A.A. and Raikhel, N.V. (1999). The specificity of vesicle trafficking: coat proteins and SNAREs. The Plant Cell. 11:629-641
Sieberer, B.J., Ketelaar, T., Esseling, J.J., and Emons, A.M.C. (2005). Microtubules guide root hair tip growth. New Phytologist 167:711-719
Siniossoglou, S. and Pelham, H. R. (2001). An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 20, 5991-5998.
Sung, D.Y., Kaplan, F., Lee, K.J., and Guy, L.C. (2003). Acquired tolerance to temperature extremes. Trends Plant Sci. 8:179-187
Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev. 81:153-208
Tanksley, S.D., Ganal, M.W., and Martin, G.B. (1995). Chromosome landing: a paradigm for map-based gene cloning implants with large genomes. TIG 11:63-68
Tominaga, M., Yokota, E., VidaliL., Sonobe, S., Hepeler, P., and Shimmen, T. (2000). The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in hair cells of Hydrocharis. Planta 210:836-843
Voigt, B., Timmers, A.C., Samaj, J., Hlavacka, A., Ueda, T., Preuss, M., Nielsen, E., Mathur, J., Emans, N., Stenmark, H., Nakano, A., Baluska, F., and Menzel, D. (2005). Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol. 84:609-21.
Wang, Q., Kong, L., Hao, H., Wang, X., Lin,J., Samaj, j., and Balusks, F. (2005). Effects of Brefeldin A on Pollen Germination and Tube Growth. Antagonistic Effects on Endocytosis and Secretion. Plant Physiol. 139:1692-1703
Whyte, J.R.C. and Munro, S. (2001). The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1: 527-537
Whyte, J.R.C. and Munro, S. (2002). Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115: 2627-2637
Wu, S.J., Locy, R.D., Shaw, J.J., Cherry, J.H., and Singh, N.K. (2000). Mutation in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant Physiol. 157:543-547
Zheng, Z.L. and Yang, Z. (2000). The Rop GTPase switch turns on polat growth in pollen. Trends Plant Sci. 5:298-303
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明