博碩士論文 92224022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.233.217.242
姓名 林富揚(Fu-Yang Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Xanthmonas campestris pv. campestris 未知功能蛋白之NMR結構解析
(NMR Structure Determination of Proteins of Unknown Function In Xanthmonas campestris pv. campestris)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 快速成長的序列資料庫留下許多未被註解功能的基因。蛋白質的三級結構決定了它的功能。因些,決定一個未知功能蛋白質的結構可以幫助我們預測它的功能。Xanthomonas campestris 結構基因體計畫是以鑑定出具有新穎結構及功能的蛋白為目標。Xanthomonas campestris 為一株感染十字花科造成十字花科黑腐病之植物病原菌,造成農業上的重大損失。X. campestris 的基因體中共被預測出 4182 個 ORF, 其中1474個基因未被註解有任何功能。我們利用高場核磁共振技術(NMR)來解析未知功能蛋白的結構及預測其功能。在本論文中,共研究了3個未知功能蛋白: XC975, XC5375, 和XC1692。XC975是一個由逆境誘發的 morphogen。在Pfam中屬於BolA Family。BolA蛋白在 E. coli的生理功能已有初步研究。當BolA表現時會誘發下游基因的表現,使細菌轉變為圓形的型態。XC975結構和E. coli的BolA和mouse的BolA-like蛋白有很類似的結構,但彼此序列的相似度不高(~30%),它們的功能推測和DNA的結合有關。XC5357被註解為 tetracenomycin polyketide synthesis protein,但活性未知。比對了XC5357的折疊,我們找出兩個和XC5357相關的結構:一為 oxalate decarboxylase,一為 mannose-6-phosphate isomerase。然而這是兩個很不同的酵素,進行不同的化學反應。必須進行更多生化的試驗後,才可對XC5357的功能做進一步解釋。而XC1692也是一個未知功能蛋白。由初步NMR和生物資訊分析,發現它很可能屬於一個ribonuclease Sa inhibitor—barstar。同樣地,XC1692和barstar有很低的序列相似度,但XC1692具有類似 barstar和ribonuclease結合的保留性胺基酸,且俱相同的二級結構。不同的是XC1692在N端多了具有二級結構的40個胺基酸。 Pull-down assay 和 chemical perturbation experiment 確定它可與X. campestris genome中的ribonuclease Sa (XC1691) 蛋白結合。
摘要(英) The rapidly growing sequence database results in a large number of genes remaining to be annotated. Since the biological function of a protein is determined by its three-dimensional structure, it is thus reasonable to believe that the unknown function of a protein can be predicted from its determined structure.
A structural genomic project of the plant pathogen Xanthomonas campestris has been initiated to identify and characterize the structures and functions of unknown proteins. Xanthomonas campestris is a gram-negative bacterium that is phytopathogenic to cruciferous plants and causes worldwide agricultural loss. Among the 4182 ORFs predicted in the Xanthomonas campestris pv. campestris str. ATCC 33913 genome, 1474 of the them have no assigned function. Three proteins XC975, XC5357, and XC1692 have been studied using high field NMR in this work. XC975 is a hypothetical protein classified as a stress-induced morphogen in the COG database. The determined structure of XC975 is similar to that of mouse BolA-like protein that exhibits its function through binding with DNA. The determined fold of XC5357 was found to correlate with two very different enzymes, an oxalate decarboxylase and a mannose-6-phosphate isomerase. More functional assays are needed to further determine and confirm its function. XC1692 is another hypothetical protein with a suggested function of ribonuclease inhibitor adopting a barstar-like (secondary) structure. Its potential target was identified and a pull-down assay and a chemical perturbation experiment are used to confirm its interaction with the ribonuclease Sa like protein, XC1691 in the X. campestris genome.
關鍵字(中) ★ Bartar
★ PKS
★ BolA
★ 核磁共振
★ 結構基因體
★ 蛋白質結構
關鍵字(英) ★ Structural genomics
★ protein structure
★ nmr
★ BolA
★ PKS
★ Barstar
論文目次 Chapter1. Introduction 1
1-1 Structural Genomics Project of Xanthomonas campestris pv.campestris 1
1-2. Background of the Targeting Genome 2
1-3 Protein NMR in Structural Genomics 2
1-4 High-Throughput NMR Structure Determination 4
Chapter2. Materials and Methods 5
2-1 Target Selection 5
2-2 NMR Sample Preparation 6
2-2-1 XC975 6
2-2-2 XC5357 6
2-2-3 XC1692 7
2-3 NMR Data Collection and Data Processing 9
2-4 Backbone Assignments 10
2-4-1.Resonance Assignments 10
2-4-2. Backbone resonance assignment by triple resonance experiments 11
2-4-3. Automated Backbone Resonance Assignment By AutoAssign Program 12
2-4-5. Protocols of Automated Backbone Assignment Using Sparky and 17
AutoAssign 17
2-4-4. Validation of Manual and AutoAssign assignment Results 17
2-5 Side-chain Chemical Shift Assignment 18
2-5-1 Side-chain Chemical Shift Assignment 18
2-5-2 Stereospecific Assignment 20
2-6 Secondary Structure Determination 21
2-7 Distance Constraints, NOESY Assignment and Structure Calculation 23
2-7-1 Principles 23
2-7-2 Automated NOESY Assignment and Structure Calculation 25
2-8 Additional Restraints 26
2-8-1 Hydrogen Bond Restraints 26
2-8-2 Phi Angle Restraints from HNHA Experiment 27
2-8-3 TALOS Derived Torsion Angle Restraints 27
2-8-4 Other Types of Restraints 28
Chapter3. Results and Discussions 30
3-1 Solution Structure Determination of XC975: A Putative DNA Binding Protein Belonging to BolA Family 30
3-1-1 Introduction 30
3-1-2 Primary sequence analysis 32
3-1-3 Chemical Shift Assignment 33
3-1-4 Secondary Structure Determination, H-bond restraints and Torsion Angle Restraints 34
3-1-5 NOESY Assignment and Structure Calculation 34
3-1-6 Structural Description 35
3-1-7 Discussion 35
3-2. Fold determination of XC5357: A Domain-Swapped Dimer of Tetracenomycin Polyketide Synthesis Protein Adopted the Cupin Fold? 38
3-2-1 Introduction 38
3-2-2 Primary sequence analysis 39
3-2-3 Chemical Shift Assignment 40
3-2-4 Secondary Structure Determination, H-bond restraints and Torsion Angle Restraints 41
3-2-5 NOESY Assignment and Structure Calculation 41
3-2-6 Structure Description 42
3-2-7 Discussions 43
3-3. NMR Analysis and Bioinformatic Survey of XC1692: 45
A Conserved Hypothetical Protein Turns out to Be A 45
Barstar-like Ribonuclease Inhibitor? 45
3-3-1 Introduction 45
3-3-2 Chemical Shift Assignment 46
3-3-3 Secondary Structure Determination, H-bond restraints and Torsion Angle Restraints 46
3-3-4 NOESY Assignment and Structure Calculation 47
3-3-5. Primary Sequence and Secondary Structure Analysis 47
3-3-6 Chemical Shift Perturbation 49
3-3-7 Discussion 49
References 51
參考文獻 王旭川 (2002) 國立清華大學生科所碩士論文
胡玉真 (2004) 國立中央大學生科所碩士論文
朱巧莉 (2005) 國立中興大學生化所碩士論文
魏琨洲 (2005) 國立中興大學生化所碩士論文
Aldea M, Garrido T, Hernandez-Chico C, Vicente M, Kushner SR (1989) EMBO J ,8:3923-3931.
Archer S. J., Ikura M., Torchia D. A., Bax A. (1991) J. Magn. Reson 95,
636-641.
Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L. and Sonnhammer, E.L.L. (2002) Nucl. Acids Res., 28, 263–266.
Bax A., Ikura M., (1991) J. Biomol. NMR 1, 99-104.
Brenner S. E. (2000) Nature Structural Biology, structural genomics supplement
Caffrey M. , Cai M., Kaufman J., Stahl S. J., Wingfield T. P., Covell G. P.,
Gronenborn A.M., and Clore G. M. (1998) EMBO Journal 17 ,4572–4584.
Cavanagh, J., W. J. Fairbrother, A.G. Palmer III and N.J. Skelton. (1996) Protein NMR spectroscopy: principles and practice. Academic Press: San Diego.
Chin K. H., Lin F. Y., Hua Y.C., Sze K. H., Lyu P. C. & Chou S. H. (2005)
J. Biomol NMR 31: 167–172
Clore G. M., Gronenborn A. M. (1989) Crit. Rev. Biochem. Mol. Biol. 24,
479-557.
Curley R. W., Panigot M. J., Hansen A. P., Fesik S. W., (1994) J. Biomol.
NMR 4, 335-340.
da Sllva, A. C. R., J. A. Ferro, F. C. Reinach, C. S. Farah, L. R. Furlan, R. B. Quaggio, C. B. Monteiro-Vitorello, M. A. Van Sluys, N. F. Almeida, L. M. C. Alves, A. M. do Amaral, M. C. Bertolini, L. E. A. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L. P. Ciapina, R. M. B. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos, H. E-Dorry, J. B. Faria, A. J. S. Ferreira, R. C. C. Ferreira, M. I. T. Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite, E. G. M. Lemos, M. V. F. Lemos, E. C. Locali, M. A. Machado, A. M. B. N. Madeira, N. M. Martinez-Rossi, E. C. Martins, J. Meidanis, C. F. M. Menck, C. Y. Miyaki, D. H. Moon, L. M. Moreira, M. T. M. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi, J. A. D. Sena, C. Silva, R. F. de Souza, L. A. F. Spinola, M. A. Takita, R. E. Tamura, E. C. Teixeira, R. I. D. Tezza, M. Trindade dos Santos, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal and J. P. Kitajima (2002) Nature 417, 459-463.
Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995)
J. Biomol. NMR, 6, 277-293.
Diercks T., Coles M., Kessler H. (1999) J. Biomol. NMR 15, 177-180.
Dow, J.M., Crossman, L., Findlay, K., He, Y.-Q., Feng, J.-X. and Tang, J.-L. (2003) Proc. Natl. Acad. Sci. USA, 100, 10995–11000.
Dunwell JM, Khuri S, Gane PJ. (2000) Microbiol. Mol. Biol. Rev. 64,153–179.
Fesik S. W., Zuiderweg E. R. P. (1988) J. Magn. Reson 78, 588-593.
Fiaux, J., Bertelsen, E., Horwich, A. and Wüthrich, K. (2002) Nature 418, 207–211.
Gippert G. P., Yip P. F., Wright P. E., Case D. A. (1990) Biochem. Pharmacol
40, 15-22.
Goddard, T.D. and Kneller, D.G. University of California, San Francisco, CA.
Griesinger C., Sorensen O. W., Ernst R. R., (1987) J. Magn. Reson, 73,
574-579.
Griesinger C., Sorensen O. W., Ernst R. R., (1987) J. Am. Chem. Soc 109,
7227-7228.
Grzesiek S., Wingfield P., Stahl S., Kaufman J. D., Bax A. (1995) J. Am. Chem.
Soc 117, 9594-9595.
Hill R. K., Yan S., Arfin S. M., (1973) J. Am. Chem. Soc 95, 7857-7859.
Ikura M., Kay L. E., Bax A., (1990) Biochemistry 29, 4659- 4667.
Ikura M., Kay L. E., Bax A., (1991) J. Biomol. NMR, 1, 299-304.
Jaroszewski, L., Schwarzenbacher, R., Von Delft, F., Mcmullan, D., Brinen, L. S., Canaves, J. M., Dai, X., Deacon, A. M., Didonato, M., Elsliger, M. A., Eshagi, S., Floyd, R., Godzik, A., Grittini, C., Grzechnik, S. K., Hampton, E., Levin, I., Karlak, C., Klock, H. E., Koesema, E., Kovarik, J. S., Kreusch, A., Kuhn, P., A., S. (2004) Proteins 56, 611-164.
Jasanoff A. (1998) J. of Biomol. NMR 12, 299–306
Jasanoff A. Wagner G. and Wiley D. C. (1998) EMBO Journal , 17, 6812–6818.
Karplus M., (1959) J. Phys. Chem 30, 11-15.
Karplus M., (1963) J. Am. Chem. Soc 85, 2870-2871.
Kay L. E., Ikura M., Tschudin R., Bax A., (1990) J. Magn. Reson. 89, 496-
514.
Kay L. E., Ikura M., Bax A. (1990) J. Am. Chem. Soc. 112, 888-889.
Kasai, T., Inoue, M., Koshiba, S., Yabuki, T., Aoki, M., Nunokawa, E. and al. e.,
(2003) Protein Sci., 13, 545-548.
Kainosho M., Ajisaka K. (1975) J. Am. Chem. Soc, 97, 5630-5631.
Koradi R., Billeter M., Engeli M., Guntert P. and Wuthrich K. (1998) J. Magn. Reson. 135, 288-297.
Lin Y., Wagner G., (1999) J. Biomol. NMR, 15(3):227-39.
Linding R., Russell B. R., Neduva V. and Gibson T. J. (2003) Nucleic Acids Research 31,3701-3708.
Linden van der MP, de Haan L, Hoyer MA, Keck W. (1992) J. Bacteriol. ,174 7572-7578.
Liu Y., Eisenberg D. (2002) Protein Sci. 11, 1285-1299.
Logan T. M., Olejniczak E. T., Xu R. X., Fesik S. W., (1992) FEBS Lett,
314, 413-418.
Merutka G., Dyson H. J., Wright P. E.(1995) J. Biomol. NMR 5, 14-24.
Montelione G.T., Lyons B. A., Emerson S. D., Tashiro M. (1992) J. Am. Chem.
Soc, 114, 10974-10975.
Moseley, H. N. B. and Montelione, G. T. (1999) Curr. Opin. Struct. Biol. 9: 635 - 642.
Moseley, H.N.B.; Monleon, D.; Montelione, G.T. (2001) Meths. Enzymology, 339: 91-108
Moseley H., Sahota G. and Montelione G., (2004) J. Biomol. NMR, 28, 341-355.
Muhandiram D. R., Farrow N. A., Xu G. Y., Smallcombe S. H., Kay L. E.(1993) J. Magn. Reson. Ser. B 102, 317-321.
Murzin AG, Brenner SE, Hubbard T, Chothia C. (1995) J. Mol. Biol. 247, 536–540.
Neri D., Szyperski T., Otting G., Senn H., Wüthrich K. (1989) Biochemistry
28, 7510-7516.
O'Donoghue S. I., King G. F. and Nilges M. (1996) J. Biomol. NMR 8, 193-206.
Page, R., Peti, W., Wilson, I.A., Stevens, R.C. and Wüthrich, K. (2005) Proc. Natl. Acad. Sci. USA 102, 1901–1905.
Prestegard J. H. (1998) Nature Structural Biology , NMR supplement.
Reily M. D., Thanabal V., Omecinsky D. O. (1992) J. Am. Chem. Soc.,
114, 6251-6252.
Santos, J.M., Freire, P., Vicente, M. and Arraiano, C.M. (1999) Mol. Microbiol. 32, 789–798.
Santos J. M., Lobo M., Matos P. A. M., Pedro A de M. and Arraiano, M. C. (2002)
Mol. Microbiol. 45, 1729–1740
Schubert, M., Labudde, D., Oschkinat, H., and Schmieder, P. (2002) J. Biomol. NMR 24, 149-154
Schwarzenbacher, R., Von Delft, F., Jaroszewski, L., Abdubek, P., Ambing, E., Biorac, T., Brinen, L. S., Canaves, J. M., Cambell, J., Chiu, H. J., Dai, X., Deacon, A. M., Didonato, M., Elsliger, M. A., Eshagi, S., Floyd, R., Godzik, A., Grittini, C., Grzechnik, S. K., Hampton, E., Karlak, C., Klock, H. E., Koesema, E., K, J. S.: (2004) Proteins 56, 392-395.
Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J. (1991) J.
Biomol. NMR, 1, 217–236.
Sevcik J., Urbanikova L., Dauter Z., Wilson K. S. (1998) Acta Crystallogr D Biol Crystallogr 54 ,954-963.
Sylvester S. R., Stevens C. M. (1979) Biochemistry 18, 4529-4531.
Szyperski T., Neri D., Leiting B., Otting G., Wüthrich K., (1992) J. Biomol.
NMR 2, 323-334.
Tjandra, N. and Bax, A. (1997) Science 278, 1111-1114.
Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B. et al.,(2001) Nucl. Acids. Res., 29, 22–28.
Tugarinov V, Choy WY, Orekhov VY, Kay LE. (2005) Proc. Natl Acad Sci. 102, 622-7.
Vieira, H.L.A., Frire, P. and Arraiano, C.M. (2004) Appl. Environ. Microbiol. 70, 5682–5684.
Vuister G. W., Bax A., (1993) J. Am. Chem. Soc 115, 7772-7777.
Watnick, P. and Kolter, R. (2000) J. Bacteriol. 182, 2675–2679.
Whitehead B., Craven C. J., Waltho J. P., (1997) Methods. Mol. Biol. 60,
29-52.
Wishart D. S., Sykes B. D., Richards F. M., (1991) J. Mol. Biol. 222, 311-
333.
Wishart D. S., Sykes B. D., Richards F. M., (1992) Biochemistry 31,
1647-1651.
Wishart D. S., Sykes B. D. (1994) J. Biomol. NMR 4, 171-180.
Wittekind M., Mueller L., (1993) J. Magn. Reson 101(B), 201-205.
Wüthrich K., Billeter M., Braun W., J. Mol. Biol. 1983, 169, 949-961.
Wüthrich K., (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience,
New York.
Zheng D, Huang YJ, Moseley HN, Xiao R, Aramini J, Swapna GV, Montelione GT
(2003) Protein Sci. 12,1232-1246.
Zimmerman, D.E., Kulikowski, C.A., Wang, L.L., Lyons B.A. and Montelione, G.T. (1994) J. Biomol. NMR 3, 241-247
Zimmerman, D.E., Kulikowski, C.A., Huang, Y., Feng, W., Tashiro, Shimotakahara, S., Chien, C., Powers, R., Montelione, G.T., (1997) J. Mol. Biol. 269, 592-610.
指導教授 周三和、黃雪莉
(Shan-Ho Chou、Shir-Ly Huang)
審核日期 2005-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明