博碩士論文 92226002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.210.184.142
姓名 陳建成(Chien-Chen Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 演色性評估之相關性指標
(Correlation Index for Evaluation of Color Rendition)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ 生物晶片之螢光光學檢測
★ 生物晶片螢光分析之微光學模組★ 光學式生化反應即時偵測系統
★ 微液滴驅動之研究與探討★ LED光源新式應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雖然在CIE的方式外,仍有許多評估演色性質的方法,由CIE提出的CRI仍然是最廣為利用且是目前唯一國際通用的方法,但事實上卻存在著許多本質上的問題。
本文提出以線性相關係數(Linear Correlation Coefficient)為基礎的新評估方式,試圖解決現今演色性根本的問題。其中,採用fundamental metamer 的觀念與 Matrix-R 的計算方式來得到光譜直流的成分。此外,利用Munsell Book of Colors 各色塊之間的等色覺差異的特性,做為新評估指標的建立標準。從中並發現
fundamental metamer的線性相關係數與Munsell hue、value、chroma存在著特定的關聯性,且已在分析上得到極佳的驗證。另外,在取樣測量色塊顏色與數量的決定上,採用了主成分分析(PCA)來得到色塊樣本的獨立子空間,此獨立子空間代表了色塊樣本實際有用的光譜資,且在與前述fundamental metamer之線性相關係數的合併架構中,此結果經與CIEDE2000的對應結果顯示,在評估演色性上,此架構確實可行,而且具有相當的客觀性。
摘要(英) Up to date, there are a lot of evaluation methods for rating the color rendition having
been proposed. Among them, the CRI recommended by CIE is the most utilized withinthe lighting community, and is the only internationally agreed metric currently. However,some intrinsic drawbacks do make those evaluation methods inactive in certain special cases.
In this thesis, the basic concept of the Linear Correlation Coefficient has been proposed
to solve the fundamental problems of color rendering. In calculating the linear correlation
coefficient, the fundamental metamer and the Matrix-R have been applied for obtaining the invariant components of the spectrum. Besides, the chips of Munsell Book of Colors are also adapted for the requirement of the sample set with equal perceptual distance. It is found that there exists certain relation between the Linear Correlation Coefficient of the obtained fundamental metamers and Munsell hue, value, and chroma. Some preliminary fitting models for the specific relation has been established and proved to work very well.
Finally, as considering the least number of samples of the specified data set, the well known Principal Component Analysis, which is the important and useful tool in color technology, was used to find the independent subspace which the specified sample data set actually localize. i.e. the truly useful spectral information of a specified sample data set. As compared with the result from CIEDE2000, the proposed scheme of the process in this thesis is really practical and very feasible.
關鍵字(中) ★ 演色性
★ 相關性
★ 主成分分析
關鍵字(英) ★ correlation
★ principal component analysis
★ color rendition
論文目次 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . 1
1.1 Nature of light and color . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cone Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Color Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Describing Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 CIE 1931 RGB Color Space. . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 CIE 1931 XYZ Color Space. . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 CIE 1960 Luv Color space . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 CIE 1976 L a b Color Space . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Munsell Color Order System . . . . . . . . . . . . . . . . . . . . . 16
2.2 Color Rendition . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Color Difference formulae. . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Color Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 CIE Standard Illuminant. . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Color Rendering Index. . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4.1 CIE Color Rendering Index . . . . . . . . . . . . . . . . . . . . 25
2.2.4.2 Hisdal’s Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4.3 Flattery Index, Rf . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4.4 Color Preference Index, CPI . . . . . . . . . . . . . . . . . . . 29
2.2.4.5 Color Discrimination Index, CDI . . . . . . . . . . . . . . . . . 29
2.2.4.6 Cone Surface Area, CSA . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4.7 Color Rendering Capacity, CRC . . . . . . . . . . . . . . . . . . 30
2.3 Essential Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Theories and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Metamerism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Vector Representation for Spectral Data . . . . . . . . . . . . . . . 34
3.3 The Wyszecki Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Matrix-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Linear Correlation Coefficient . . . . . . . . . . . . . . . . . . . . 40
3.6 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 41
4 Simulating Eye Perception . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Simulation Using Munsell Color Chips . . . . . . . . . . . . . . . . . 46
4.2 Result of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Correlation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Spectral information . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Simulation of Color Rendering . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Simulation of Color Rendering - Model A . . . . . . . . . . . . . . 68
5.2.2 Simulation of Color Rendering - Model B . . . . . . . . . . . . . . 74
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A A proof of Matrix R . . . . . . . . . . . . . . . . . . . . . . . . . . 88
參考文獻 Reference
[1] R. W. G. Hunt, MEASURING COLOR 2nd edition,New York E. Horwood 1991.
[2] Nadarajah N., Lei D., Color rendering Properities of LEDs Light Sources. Lighting Research Center.
[3] H Xu, Colour rendering capacity and luminous efficiency of a spectrum. Lighting Res. Technol.1993;25:131-133.
[4] Hisdal B., Colour samples and colour rendering of light sources. Lighting Res.Tehcnol. 1993;25:13-17.
[5] Judd DB. A flattery index for artificial illuminants. Illum. Eng. (USA),
1967;62:593-598.
[6] Thornton WA. A validation of the color preference index. J. Ill. Eng.
Soc.,1974;4:48-52.
[7] Thornton WA. Color-discrimination index., J. Opt. Soc Am.,1972;62:191-194.
[8] Fotios SA. The perception of light sources of different colour properties. PhD thesis. Manchester, UMIST UK: 1997.
[9] Xu H., Colour rendering capacity of illumination. J. of the Ill. Eng. Soc. 1984;13:270-276.
[10] Colour rendering capacity and luminnous efficiency of a spectrum. Lighting Res.Technol., 1933; 25:131-132.
[11] Xin Guo, A review of colour rendering indices and theri application to commercial light sources. 2004;36:183-199
[12] Daniel Malacara, Color Vision and Colorimetry - THEORY AND APPLICATIONS,
Bellingham, WA : SPIE Press, c2002.
[13] Jon Y. Hardeberg, Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches, Dissertation.com, USA,2001
[14] Karl R. Gegenfurtner, Lindsay T. Sharpe, Color vision : from genes to perception, Cambridge, U.K. ; New York : Cambridge University Press, 1999.
[15] Roy S.Berns, BILLMEYER AND SALTZMAN’S PRINCIPLES OF COLOR THECHNOLOGY, New York : Wiley, c2000.
[16] Thomas Panagopoulos’s website, http://w3.ualg.pt/ tpanago/44
[17] M. R. Luo, G. Cui, B.Rigg, The Development of the CIEDE2000 Colour-Difference Formula: CIEDE2000. Color Res Appl, 2001;26:340-350.
[18] I. Ashdown, Chromaticity and Color Temperature for Architectural Lighting,
Solid State Lighting II, Proc. SPIE 4776, pp. 51V60, 2002.
[19] D. E. Judd, ”ensibility to Color-Temperature Change as a Function of Temperature”, Journal of the Optical Society of America, 23, pp. 7-14, 1933.
[20] K. L. Kelley, ”Lines of Constant Correlated Color Temperature Based on
MacAdam’s (u,v) Uniform Chromaticity Transformation of the CIE Diagram,”
Journal of the Optical Society of America, 53(8), pp. 999-1002, 1963.
[21] ”Method of Measuring and Specifying Colour Rendering Properties of Light
Sources,” in CIE 13.3-1994 Technical Report, CIE, 1994.
[22] Pointer MR. Measuring colour rendering- a new approach. Lighting Res. Technol.,1986; 18:175-184.
[23] Ikeda K and Obara K, Improvement of uniformity in clour space in terms of clour specification and colur difference evaluation,CIE Proceedings Melbourne 1991; 1:49-50.
[24] Ikeda K et al. New uniform colour space for colour difference evaluation, Lux Europa 1993,2,649-656.
[25] Ichihashi A, Yamashina H, Ikeda K and Obara K Development of uniform colour spaces consifering opponent colour responses,2nd Lux Pacifica Proceedings,pp A13-18, 1993
[26] K Ikeda PhD, H Yamashina and A Ichihashi, Color rendering properties of light sources: New color space for evaluation. Lighting Res. Technol. 1996;28:97-112.
[27] MacAdam DL., Metric coefficients for CIE color-difference formulas. Color Res.Appl., 1985;10:45-49.
[28] C. van Trigt, Color Rendering, a Reassessment, Color Res. Appl., 1999;24:197-206.
[29] Commission Internationale de l’Eclairage: Improvement to industrial colour difference evaluation. Publ. CIE 141;2001.
[30] T ¨unde T., Peter B., J´anos S., COLOUR RENDERING PROPERTIES OF LED
SOURCES, CIE 2nd LED Measurement Symposium, Gaithersburg, 2001.
[31] Yoshi Ohno, Proc. of SPIE; 2004:5530,88-98.
[32] Jozef B. Cohen, William E. Kappauf. Metameric color stimuli,fundamental
metamers and Wyszecki’s metameric blacks. Amercian Journal of Psychology,
1982;95:539-564.
[33] Jozef B. Cohen, VISUAL COLOR AND COLOR MIXTURE: The Fundamental
Color Space,Urbana, Ill. : University of Illinois Press, c2001.
[34] James A. Worthey, Color Rendering: Asking the Question. 2003;28:403-412.
[35] I.T. Jolliffe, Principal component analysis,New York : Springer, 2002.
[36] Hugh S. Fairman, Michael H. Bill, The Principal Components of Reflectances. Color Res. Appl., 2004;29:104-110.
[37] Di-Yuan Tzeng, Roy S. Berns, A Review of Principal Component Analysis and
Its Applications to Color Technology. Color Res Appl, 2005;30:84-98.
[38] Kobus B., Lindsay M., Brian F., Adam C., A Data Set for Color Research. Color Res. Appl., 2002;27:147-151
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明