以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數：10 、訪客IP：3.234.210.89

姓名湯惠婷(Hui-Ting Tang) 查詢紙本館藏 畢業系所光電科學與工程學系 論文名稱光子晶體異常折射之能流研究

(Anomalous Refraction in Photonic Crystal Analyzed By Energy Velocity)相關論文檔案[Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]

- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的，進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定，切勿任意重製、散佈、改作、轉貼、播送，以免觸法。

摘要(中)近年來對於光子晶體異常折射現象的研究是很熱門的研究課題，因為若左手物質和負折射現象存在，這代表光可以突破繞射極限或反司乃爾定律•••等不尋常光的現象，使很多人著手於模擬與實驗來驗證負折射和左手物質存在的可能性，但現今仍有許多的困難存在。

現今很少人去研究光在光子晶體中的走向，因為光射入光子晶體後，可能會出現反射、散射的情況發生，所以現今研究光在光子晶體的走向，都是計算出光子晶體的能帶結構後，得到等頻率面，對等頻率面取梯度，計算出群速度的方向，再依群速度的走向，來判斷光進入光子晶體中的走向。

本論文是提出一個新的想法來定義光在光子晶體中的走向，相關討論詳見第三章。在第二章裡介紹我們所使用的模擬方法，分別為有限時域差分法和平面波展開法。第三章分為三個部分，第一部分是用部分能帶的理論去看光在光子晶體中的走向，發現平面波大角度入射進光子晶體達穩態後，會有類似負折射的現象產生。第二部分是用計算等頻率面去預測光在光子晶體中的走向，也是在平面波於大角度入射光子晶體達穩態後，發現光在光子晶體中所走的方向不吻合等頻率面所算出的角度。第三部分是平面波入射進光子晶體內部達穩態後，計算在光子晶體內的能流分佈，在用光線追跡的方法，去預測當點光源入射時，光會在光子晶體中的走向，與有限時域差分法所計算出的點光源的場圖去做對

照，發現結果是相當吻合的。因此本論文的方法可有效應用於分析光子晶體中光傳播的異常折射現象。摘要(英)Recently, the abnormal refraction phenomena of the light propagating in the photon crystals have attracted many attentions. The so-called left-handed materials (LHMs) possess some peculiar properties for the electromagnetic

waves such as the inverse Snell’s law, the reversed Doppler shift, and the reversed Cherenkov radiation, etc. Many people are devoted to simulate and fabricate the left-handed materials and photonic crystals to study the abnormal properties. However, some arguments are still left unsolved.

In the literature, the light propagation in the photonic crystals (PCs) cannot be stated by the ray-tracing method due to the complex scattering in the photonic crsytals. The refraction direction of the light propagating in the PCs and materials interface is generally predicted by using the equal frequency surface (EFS). One can calculate the band structure of the PC structure to obtain the EFS. Group velocity direction (Vg) is obtained by the

gradient of the EFS.

We found the fact that there is difference between the light propagation direction and the group velocity direction. In this thesis, we propose to use the energy velocity direction to define light propagation direction in PCs.

This will be presented in Chapter 3-2-3. We will introduce the FDTD and PWE simulation methods in Chapter 2. The third section can be split into 3

parts. The first part shows the view of point of the partial band gap to state the light propagation in PCs. The second part shows the EFS method. The relation between the incident angles and the refraction angles of Vg is

obtained. The result of the ray-tracing and the FDTD methods can be proved to be inconsistent. In the third part, we calculate the relation between the incident and the refraction angles by calculating the energy velocity (Ve)

direction of the light propagating in photonic crystals. We use this relation into the ray-tracing to analyze the imaging phenomena of the point source by the PC slab. The results show an excellent agreement. The results imply that

the ray-tracing can be used to analyze the imaging phenomena of the point source by the PC slab.關鍵字(中)★ 光子晶體

★ 異常折射

★ 能流關鍵字(英)★ photonic crystal

★ anomalous refraction

★ energy flux論文目次Abstract ....................................................................................... Ⅰ

Acknowledgements ..................................................................... Ⅴ

Contents....................................................................................... Ⅵ

List of figures .............................................................................. Ⅷ

List of table.............................................................................. ⅩⅥ

Chapter 1. Introduction ............................................................... 1

1-1. About Photonic Crystals ................................................................. 1

1-1-1. Photonic Crystals Defects .......................................................................... 3

1-1-2. Photonic Crystals in Integrated Optical Circuits........................................ 4

1-1-2-1 PCs Waveguides............................................................................... 4

1.1.2.2 Resonant Cavities in Photonic Crystals ............................................ 5

1-1-3. Photonic Crystals in Nature........................................................................ 6

1-2. Anomalous Refraction in Photonic Crystals ................................. 10

1-2-1. Flat Slab Imaging ..................................................................................... 13

1-2-2. Transmission of Plane Waves in Photonic Crystals ................................. 14

1-3. Motivation ................................................................................. 15

Chapter 2. Simulation Methods................................................. 17

2-1. Finite-Difference Time-Domain (FDTD)..................................... 17

2-1-1. FDTD’s Principle ................................................................................... 19

2-1-1-1. Discretization of Electromagnetic Waves.................................... 20

2-1-1-2. Stability Condition ...................................................................... 24

2-1-2. Perfectly Matched Layer (PML)............................................................ 28

2-2. Plane -Wave Expansion (PWE).................................................... 31

2-2-1. Brillouin Zone ........................................................................................ 31

2-2-2. Bloch Theorem....................................................................................... 32

2-3 Poynting theorem...........................................................................39

Chapter 3. Simulation process, Results and Discussions......... 40

3-1. Structures of Photonic Crystals (PCs) .......................................... 40

3-2. Simulation Discussions ................................................................ 41

3-2-1. Partial Band Gap .................................................................................... 41

3-2-2. Equal Frequency Surface (EFS)............................................................. 53

3-2-3. Total Energy Flux Vector........................................................................ 61

3-2-4. Ray-tracing and Point Source Image...................................................... 67

Chapter 4 Conclusion ................................................................. 81

Chapter 5 Future work............................................................... 85

References.................................................................................... 86參考文獻References

[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State

Physics and Electronics,” Phys. Rev. Lett., Vol. 58, No. 20, pp.

2059–2062, May 1987

[2] S. John, “Strong localization of photons in certain disordered

dielectric superlattices,” Phys. Rev. Lett., Vol. 58, No. 23 , pp. 2486–2489,

June 1987

[3] V. Kuzmiak, “Localized defect modes in a two-dimensional triangular

photonic crystal,” Phys. Rev. B, Vol. 57, No. 24, June 1998

[4] E. R. Brown, C. D. Parker, E. Yablonovitch, “Radiation properties of a

planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B, Vol.

10, No. 2, February 1993

[5] H. Y. Ryu, J. K. Hwang, Y. H. Lee, “Effect of size nonuniformities on

the band gap of two-dimensional photonic crystals,” Phys. Rev. B, Vol. 59,

No. 8, February 1999

[6] M. Qiu, S. He, “Large complete band gap in two-dimensional

photonic crystals with elliptic air holes,” Phys. Rev. B, Vol. 60, No. 15,

October 1999

87

[7] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos,

E. P. Ippen, H. I. Smith, “A three-dimensional optical photonic crystal

with designed point defects,” Nature, Vol. 429, pp. 538–542, June 2004

[8] Fleming, J. G., Lin. S. Y., “Three-dimensional photonic crystal with a

stop band from 1.35 to 1.95 m,” Opt. Lett., Vol. 24, No. 1, pp. 49–51,

January 1999

[9] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full

Three-Dimensional Photonic Bandgap Crystals at Near-Infrared

Wavelengths” , Science, Vol. 289, pp. 604–606, July 2000

[10] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J.

Turberfield, “Fabrication of photonic crystals for the visible spectrum by

holographic lithography,” Nature, Vol. 404, pp. 53–56, March 2000

[11] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural

assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, pp.

289–293, November 2001

[12] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.

Leonard, C. Lopez, F. Meseguer, H. Miguez., J. P. Mondia, G. A. Ozin,

O. Toader, H. M. van Driel, “Large scale synthesis of a silicon photonic

crystal with a complete three-dimensional bandgap near 1.5

88

micrometers,” Nature, Vol. 405, pp. 437–440, May 2000

[13] C. C. Cheng, A. Scherer, “Fabrication of photonic band-gap

crystals,” J. Vac. Sci. Technol. B, Vol. 13, pp. 2696–2700 November

1995

[14] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N.

Shinya, Y. Aoyagi, “Three-dimensional photonic crystals for optical

wavelengths assembled by micromanipulation,” Appl. Phys. Lett., Vol. 81,

No. 17, October 2002

[15] S. R. Kennedy, M. J. Brett, “Fabrication of Tetragonal Square Spiral

Photonic Crystals,” Nano Lett., Vol. 2, No. 1, pp. 59–62, 2002

[16] E. Kuramochi1, M. Notomi1, T. Kawashima, J. Takahashi,

C. Takahashi, T. Tamamura1, S. Kawakami, “A new fabrication

technique for photonic crystals: Nanolithography combined with

alternating-layer deposition,” Opt. Quant. Elec., Vol 34, No. 1–3, pp.

53–61, January 2002

[17] T. Sato, K. Miura1, N. Ishino1, Y. Ohtera1, T. Tamamura,

S. Kawakami, “Photonic crystals for the visible range fabricated by

89

autocloning technique and their application,” Opt. Quant. Elec.,Vol. 34,

No. 1–3, pp. 63–70, January 2002

[18] http://ab-initio.mit.edu/photons/

[19] H. Hirayama, T. Hamano, Y. Aoyagi, “Novel surface emitting laser

diode using photonic band-gap crystal cavity,” Appl. Phys. Lett., Vol. 69,

pp. 791–793, August 1996.

[20] J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals:

Putting a new twist on light,” Nature, Vol. 386, pp. 143–149 , March

1997

[21] J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica

single-mode optical fiber with photonic crystal cladding,” Opt. Lett., Vol.

21, No. 19, pp. 1547–1549, October 1996

[22] T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional

photonic-bandgap structures operating at near-infrared wavelengths,”

Nature, Vol. 383, pp.699–702, 1996

[23] D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La

Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, C. Jouanin,

“Quantitative measurement of transmission, reflection, and diffraction of

twodimensional photonic band gap structures at near-infrared

90

wavelengths,” Phys. Rev. Lett., Vol. 79, No. 21, pp. 4147–4150,

November 1997

[24] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, & J. D.

Joannopoulos, “Experimental demonstration of guiding and bending of

electromagnetic waves in a photonic crystal,” Science, Vol. 282, No.

5387, pp. 274–276, October 1998

[25] T. Baba, N. Fukaya, & J. Yonekura, “Observation of light

propagation in photonic crystal optical waveguides with bends,” Electron.

Lett., Vol. 35, pp. 654–655, 1999

[26] M. Notomi, “Extremely large group-velocity dispersion of

line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett., Vol.

87, No. 25, pp. 253902-1–4, December 2001

[27] Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K.

Inoue, “Fabrication and characterization of different types of

two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys., Vol. 91,

No. 3, pp. 922–929, February 2002

[28] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.

Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode

laser,” Science, Vol. 284, pp. 1819–1821, June 1999

91

[29] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki,

“Polarization mode control of twodimensional photonic crystal laser by

unit cell structure design,” Science, Vol. 293, pp. 1123–1125, August

2001

[30] D. Labilloy, et al., “Demonstration of cavity mode between

two-dimensional photonic-crystal mirrors,” Electron. Lett., Vol. 33, pp.

1978–1980, 1997

[31] S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons

by a single defect in a photonic bandgap structure,” Nature, Vol. 407, pp.

608–610, October 2000

[32] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K.

Sakoda, N. Shinya, Y. Aoyagi, “Microassembly of semiconductor

three-dimensional photonic crystals,” nature materials, Vol. 2, February

2003

[33] Gérard Tayeb, Boris Gralak, Stefan Enoch, “Structural Colors

in Natureand Butterfly-Wing Modeling,” Optics and Photonics News, pp.

38–49, February 2003

[34] L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk,1 Z. E.

Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P. Vigneron, “Role

92

of photonic-crystal-type structures in the thermal regulation of a Lycaenid

butterfly sister species pair,” Phys Rev E., Vol. 67, No.021907, February

2003

[35] R.C. McPhedran et al. , “Structural colours through photonic crystals

,” Physica B, Vol. 338, pp. 182–185, 2003

[36] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. A.

P. Nicorvici, “Aphrodite’s iridescence,” Nature, Vol. 409, pp.

36–37 ,January 2001

[37] V.G. Veselago, Sov. Phys. Usp., Vol. 10, pp. 509, 1968

[38] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism

from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans.

Microwave Theory Tech., Vol. 47, No.11, pp. 2075–2084, November

1999

[39] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S.

Schultz, “Composite Medium with Simultaneously Negative Permeability

and Permittivity,” Phys. Rev. Lett., Vol. 84, No. 18, pp. 4184–4187, May

2000

[40] P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van de

Veerdonk, W. J. M. de Jonge, “Apparent Spin Polarization Decay in

93

Cu-Dusted Co_Al2O3_Co Tunnel Junctions,” Phys. Rev. Lett., Vol.84,

No. 13, pp. 2933–2936, March 2000

[41] R. A. Shelby, D.R. Smith, and S. Schultz, “Experimental

Verification of a Negative Index of Refraction,” Science, Vol. 292, pp.

77–79, April 2001

[42] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev.

Lett., Vol. 85, No. 18, pp.3966–3969 (2000).

[43] P. Markos and C.M. Soukoulis, “Numerical studies of left-handed

materials and arrays of split ring resonators,” Phys. Rev. E, Vol. 65, No.

036622, March 2002

[44] P. Markos, I. Rousochatzakis, and C.M. Soukoulis, “Transmission

losses in left-handed materials,” Phys. Rev. E, Vol. 66, No. 045601(R),

October 2002

[45] R.B. Greegor, C.G. Parazzoli, K. Li, M.H. Tanielian, “Origin of

dissipative losses in negative index of refraction materials,” Appl. Phys.

Lett., Vol. 82,No. 14, pp. 2356–2358, April 2003

[46] S. Foteinopoulou, E.N. Economou, and C.M. Soukoulis, “Refraction

in Media with a Negative Refractive Index,” Phys.

Rev. Lett., Vol. 90, No.10, pp. 107402–1–4 , March 2003

94

[47] J. Pacheco, Jr., T.M. Grzegorczyk, T.B.I. Wu, Y. Zhang, and J.A.

Kong, “Power Propagation in Homogeneous Isotropic

Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett., Vol. 89,

No.25, pp. 257401–1–4, December 2002

[48] Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total Negative

Refraction in Real Crystals for Ballistic Electrons and Light,” Phys. Rev.

Lett., Vol. 91, No. 15, pp. 157404–1–4, October 2003

[49] D.R. Smith, D. Schurig, “ElectromagneticWave Propagation in

Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev.

Lett., Vol. 90, No.7, pp. 077405–1–4, February 2003

[50] A. A. Houck, J. B. Brock, I. L. Chuang, “Experimental Observations

of a Left-Handed Material That Obeys Snell's Law,” Phys. Rev. Lett., Vol.

90, No. 13, pp. 137401–1–4, April 2003

[51] J. Li, L. Zhou, C. T. Chan, P. Sheng, “Photonic Band Gap from a

Stack of Positive and Negative Index Materials,” Phys. Rev. Lett., Vol. 90,

No. 8, 083901–1–4, February 2003

[52] R. Ziokowski ,E. Heyman, “Wave propagation in media having

negative permittivity and permeability,” Phys. Rev. E, Vol. 64, pp.

056625–1–15, October 2001

95

[53] R. Andrews, E. R. Pike, Sarben Sarkar, “Theory of photon statistics

and squeezing in quantum interference of a sub-threshold parametric

oscillator,” Opt. Express, Vol. 11, pp. 7–13, January 2003

[54] G. Shvets, “Photonic approach to making a material with a negative

index of refraction,” Phys. Rev. B, Vol. 67, 0351091–1–8, 2003

[55] V. A. Podolskiy, A.K. Sarychev, and V.M. Shalaev, “Plasmon

modes and negative refraction in metal nanowire composites,” Opt.

Express, Vol. 11, No.7, pp. 735–745, April 2003

[56] S. A. Ramakrishna and J.B. Pendry, “Removal of absorption and

increase in resolution in a near-field lens via optical gain,” Phys. Rev. B,

Vol. 67, 201101–1–4, May 2003

[57] A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, “Nonlinear Properties

of Left-Handed Metamaterials,” Phys. Rev. Lett., Vol. 91, No. 3,

037401–1–4, July 2003

[58] R. Merlin, “Analytical solution of the almost-perfect-lens problem,”

Appl. Phys. Lett., Vol. 84, No. 8, pp. 1290–1292, February 2004

[59] L. Chen, S. He, and L. Shen, “Finite-Size Effects of a Left-Handed

Material Slab on the Image Quality,” Phys. Rev. Lett., Vol. 92, No.10, pp.

107404–1–4, March 2004

[60] D.R. Smith, D. Schurig, J.J. Mock, P. Kolinko, and P. Rye, “Partial

focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett., Vol.

96

84, No.13 , pp. 2244–2266, March 2004

[61] Z. Liu, N. Fang, T.-J. Yen, X. Zhang, “Rapid growth of evanescent

wave by a silver superlens,” Appl. Phys. Lett. ,Vol. 83, No.25, pp.

5184–5186, December 2003

[62] A. Grbic, G. V. Eleftheriades, “Overcoming the Diffraction Limit

with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett.,

Vol. 92, No.11, pp. 117403–1–4, March 2004

[63] A. N. Lagarkov, V. N. Kissel, “Near-Perfect Imaging in a Focusing

System Based on a Left-Handed-Material Plate,” Phys. Rev. Lett., Vol. 92,

No. 7, pp. 077401–1–4, February 2004

[64] G.W. ’t Hooft, “Comment on “Negative Refraction Makes

a Perfect Lens,” Phys. Rev. Lett., Vol. 87, No. 24, pp. 249701, December

2001

[65] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.

Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys.

Rev. B, Vol. 58, No. 16, pp. R10 096–099, October 1998

[66] M. Notomi, “Theory of light propagation in strongly modulated

photonic crystals: Refractionlike behavior in the vicinity of the photonic

band gap,” Phys. Rev. B, Vol. 62, No.16, pp. 10 696–705, October 2000

97

[67] B. Gralak, S. Enoch, G. Tayeb, “Anomalous refractive properties of

photonic crystals,” J. Opt. Soc. Am. A, Vol. 17, No. 6, pp. 1012–1020,

June 2000

[68] S. Foteinopoulou ,C.M. Soukoulis, “Negative refraction and

left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B,

Vol. 67, pp. 235107–1–5, June 2003

[69] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, S. Sridhar,

“Negative Refraction and Left-Handed Electromagnetism in Microwave

Photonic Crystals,” Phys. Rev. Lett., Vol. 92, No. 12, pp. 127401–1–4,

March 2004

[70] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “All-angle

negative refraction without negative effective index,” Phys. Rev. B, Vol.

65, pp. 201104–1–4, May 2002

[71] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,

“Negative refraction by photonic crystals,” Nature, Vol. 423, pp.

604–605, June 2003

[72] P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar “Imaging by flat lens

using negative refraction,” Nature, Vol. 426, pp. 404, November 2003

[73] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,

98

“Subwavelength Resolution in a Two-Dimensional

Photonic-Crystal-Based Superlens,” Phys. Rev. Lett., Vol. 91, No. 20,

207401–1–4, November 2003

[74] X. Zhang, “Absolute negative refraction and imaging of unpolarized

electromagnetic waves by two-dimensional photonic crystals,” Phys. Rev.

B, Vol. 70, pp. 205102–1–6, November 2004

[75] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry,

“Subwavelength imaging in photonic crystals,” Phys. Rev. B, Vol. 68,

045115–1–15, July 2003

[76] Z. Y. Li, L. L. Lin, “Evaluation of lensing in photonic crystal slabs

exhibiting negative refraction,” Phys. Rev. B, Vol. 68, 245110–1–7 ,

December 2003

[77] J. D. Joannopolous, R. D. Meade, J. N. Winn, Photonic Crystals,

Princeton University Press, Princeton, 1995

[78] V. M. Agranovich, Y. R. Shen, R. H. Baughman, A. A. Zakhidov,

“Linear and nonlinear wave propagation in negative refraction

metamaterials,” Phys. Rev. B, Vol. 69, pp. 165112–1–7, April 2004

[79] J. M. Williams, “Some Problems with Negative Refraction,” Phys.

Rev. Lett., Vol. 87, No.24, pp. 249703, December 2001

99

[80] N. Garcia1, M. Nieto-Vesperinas, Madrid, “Left-Handed Materials

Do Not Make a Perfect Lens,” Phys. Rev. Lett., Vol. 88, pp. 207403–1–4,

May 2002

[81] A. L. Pokrovsky, A. L. Efros, “Electrodynamics of Metallic Photonic

Crystals and the Problem of Left-Handed Materials,” Phys. Rev. Lett., Vol.

89, 093901–1–4, August 2002

[82] C. Luo, S. G. Johnson, J. D. Joannopoulos, “All-angle negative

refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys.

Lett., Vol. 83, No.13, 2352–2354, September 2002

[83] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “Negative

refraction without negative index in metallic photonic crystals,” Opt.

Express, Vol. 11, No.7, pp. 746–754, March 2003

[84] Kenji Kawano, Tsutomu Kitoh, Introduction to Optical Waveguide

Analysis…Solving Maxwell’s Equation and the Schrödinger Equation,

John Wiley & Sons., Inc., 2001.

[85] J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of

Electromagnetic Waves,” Jour. Of comp. Phys., Vol. 114, pp. 185–200,

July 1994

[86] K. S. Yee., “Numerical Solution of Initial Boundary Value Problems

100

Involving Maxwell’s Equations in Isotropic Media,” IEEE, Trans.

Antennas Propag., Vol. 14, January 1966

[87] O. Ramadan, “State-space FDTD implementation of anisotropic

perfectly matched layer,” Electron. Lett., Vol. 39, No. 13, June 2003

[88] David K. Cheng, Field and Wave Electromagnetics,

Addison–Wesley publishing Company, 2nd, 1989.

[89] J.-P. Berenger, “Three-Dimensional Perfectly Matched Layer for

Electromagnetic Waves,” Jour. Of Computational Physics, Vol. 127, No.

0181, pp. 363–379, October 1997

[90] D. T. Prescott, N. V. Shuley, “Reflection Analysis of FDTD

Boundary Conditions—Part II: Berenger’s PML Absorbing Layers,”

IEEE Transactions on microwave theory and technique, Vol.45 , No.8 ,

pp. 1171–1178, August 1997

[91] G. Mur, “Absorbing boundary conditions for the finite difference

approximation of the time-domain electromagnetic-field equations,”

IEEE Trans. Electromagn. Compat., vol. 23, pp. 377-382, Nov. 1981

[92] M. Plihal, A. A. Maradudin, “Photonic band structure of

two-dimensional systems: The triangular,” Phys. Rev. B, Vol. 44, No. 16,

pp. 8565–8571, October 1991

101

[93] K. Sakoda, Optical Properties of Photonic Crystal, Springer, 2001,

[94] Charles Kittel, Introduction to Solid State Physics, John Wiley &

Sons, Inc., 7th, 1953, 1956, 1966, 1971, 1976, 1986, 1996

[95] H. T. Chien, H. T. Tang, C. H. Kuo, C. C. Chen, Z. Ye, “Directed

diffraction without negative refraction,” Phys. Rev. B, Vol. 70, pp.

113101–1–4, September 2004

[96] C.-H. Kuo and Z. Ye, cond-mat/0310423 (unpublished);

cond-mat/0312288 (unpublished)

[97] L. S. Chen, C. H. Kuo, Z. Ye, “Guiding optical flows by photonic

crystal slabs made of dielectric cylinders,” Phys. Rev. E, Vol. 69,

066612–1–6, June 2004

[98] Z. Ye, A note on the group and energy velocities of waves in crystals,

unpublished.

[99] A. Yariv, P. Yeh, Optical waves in crystals, John Wiley & Sons, Inc.,

Taipei, 1984

[100] Z. Ye (unpublished); C.-H. Kuo and Z. Ye, cond-mat/0405008

(unpublished)

[101] X. Yu, S. Fan, “Bends and splitters for self-collimated beams in

photonic crystals,” Appl. Phys. Lett., Vol. 83, No. 16, pp. 3251–3253,

102

October 2003

[102] J. Witzens, M. Loncar, A. Scherer, “Self-collimation in planar

photonic crystals”. Quantum electronics., Vol. 8, No. 6, pp. 1246-1257 ,

November/ December 2002指導教授陳啟昌(Chii-Chang Chen) 審核日期2005-6-29 推文facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤Google bookmarks del.icio.us hemidemi myshare