博碩士論文 92226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.15.190.144
姓名 黃馨諄(Hsin-Chun Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 導波共振光學元件應用於生物感測器之研究
(Study of Si-based guided-mode resonance element for optical biosensor)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質★ 熔融法折射式微透鏡陣列之設計製造與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
生物感測器雖然發展已久,但仍有幾個極大的問題待解決--標定、平行處理、以及微小化的問題。於本文中我們提出一新型之光學生物感測晶片—導波共振光學元件。此生物感測晶片是利用半導體製程,製作出奈米級之次波長光柵,並利用導波共振光學元件的窄帶高反射率之效果,以及其對表面之敏感性,作為偵測生物分子親合力作用之過程。此生物感測器不但不需要標定、並且可以做到微小化、高通量、即時偵測、而且導波共振光學元件是在矽晶圓上製作,易與其他半導體元件結合。
在本文中,我們製作出窄帶及高反射的導波共振光學元件,其半高寬約為2.15nm、反射率約為80%,並利用導波共振光學元件對表面變化的敏感性,將其應用於生物感測器領域。我們偵測二氧化矽多層膜沉積於導波共振光學元件之上,並由實驗中得到可做定量推算二氧化矽膜厚的公式,且我們所設計的導波共振光學元件對二氧化矽的靈敏度為0.875nm,也就是說,若有0.875nm厚的二氧化矽在導波共振光學元件上,即可偵測出來。再者,我們也對DNA雜交過程做偵測,先於導波共振光學元件表面進行表面改質的動作,並於導波共振光學元件表面接上三段DNA (Capture DNA, Target DNA, Probe DNA),另外也探討DNA有雜交和DNA沒有雜交的反應,在DNA有雜交的情形下,導波共振光學元件所量測到的穿透頻譜之波長位移量為2.14nm,並且在DNA沒有雜交的情形下,波長位移量為0.1nm,由此可見,DNA有雜交偵測結果為DNA沒有雜交偵測結果的21倍之多,因此,我們所設計的導波共振光學元件以可以清楚的辨別DNA的雜交反應。在本文的最後,我們也證實了我們所設計的導波共振光學元件,可以達到三次重複偵測DNA的雜交,更加強了我們所設計的導波共振光學元件之可靠性。
關鍵字(中) ★ 次波 關鍵字(英) ★ guided-mode resonance
★ DNA hybridization
★ biosensor
★ subwavelength grating
論文目次 目 錄
目錄…………………………………………………………………….....i
圖目錄…………………………………………………………………...iii
表目錄………………………………………………….....……………..vi
第一章 緒論……………………………………………………………1
1.1 導波共振……………………………………………………...1
1.2 研究動機……………………………………………………...3
第二章 GMR生物感測器之原理……………………………………...6
2.1 GMR理論簡介………………………………………………..6
2.2 嚴格耦合波理論……………………………………………...8
2.3 波長飄移之機制…………………………………………….11
第三章 GMR元件之設計與製作…………………………………….13
3.1 GMR元件設計………………………………………………13
3.2 GMR元件模擬………………………………………………14
3.3 GMR元件製作………………………………………………15
3.4 GMR元件量測………………………………………………18
3.4.1 量測系統……………………………………………..18
3.4.2 GMR量測結果……………………………………….18
3.4.3 偏振量測及角度容忍度……………………………..19
第四章 GMR生物感測器…………………………………………….21
4.1偵測二氧化矽多層膜沉積…………………………………….21
4.1.1偵測二氧化矽多層膜沉積……………………………..21
4.1.2 分析與討論……………………………………………22
4.2 偵測DNA雜交……………………………………………...24
4.2.1 DNA雜交過程偵測………………………………….25
4.2.2 DNA雜交與不雜交偵測比較……………………….28
4.2.3 DNA雜交之重複性偵測…………………………….30
第五章 結論與未來展望……………………………………………..34
5.1 總結………………………………………………………….35
5.2 未來展望…………………………………………………….35
參考文獻……..…………………………………………………………36
附錄……………………………………………………………………..40
圖 目 錄
圖2.1 GMR結構圖…………………………………………………...41
圖2.2 繞射光柵模型………………………………………………….41
圖3.1 GMR元件之頻譜圖…………………………………………...42
圖3.2 生物分子在GMR表面之分布模擬情形……………………...42
圖3.3 0 nm至10 nm之DNA在GMR表面之模擬頻譜圖………….43
圖3.4 DNA在GMR表面之厚度與波長飄移量關係圖…………….43
圖3.5 0 nm至100 nm之DNA在GMR表面之模擬頻譜圖………..44
圖3.6 DNA在GMR表面之厚度與波長飄移量關係圖…………….44
圖3.7 待測物之折射率與波長飄移的關係圖……………………….45
圖3.8 待測物之厚度與波長飄移的關係圖………………………….45
圖3.9 GMR元件製作步驟…………………………………………...46
圖3.10 GMR元件之SEM圖…………………………………………47
圖3.11 GMR元件中光柵區域之SEM圖……………………………47
圖3.12 光柵側壁之SEM圖………………………………………….48
圖3.13 GMR元件成型圖…………………………………………….48
圖3.14 GMR量測系統……………………………………………….49
圖3.15 GMR元件量測與模擬之頻譜……………………………….50
圖3.16 GMR元件TE及TM之頻譜……………………………….50
圖3.17 GMR元件TM之頻譜……….……………………………….51
圖3.18 GMR元件TE之頻譜………..……………………………….51
圖3.19 斜向入射GMR元件之示意圖……………………………….52
圖3.20 GMR元件之角度容忍度(半高寬)………………………….52
圖3.21 GMR元件之角度容忍度(角度最小變異量)….…………….53
圖4.1 不同厚度之SiO2於GMR表面之穿透頻譜圖………………54
圖4.2 SiO2厚度對波長飄移之關係圖……………………………...54
圖4.3 SiO2沉積於週期為1.6μm之光柵…………………………..55
圖4.4 SiO2沉積於週期為0.8μm之光柵…………………………..55
圖4.5 SiO2厚度對波長飄移之量測與模擬關係圖………………...56
圖4.6 取對數之厚度與波長位移之關係圖………………………...56
圖4.7 DNA附著於GMR表面之過程……………………………...57
圖4.8 各DNA基因片段與其連結之示意圖……………………….57
圖4.9 偵測DNA附著步驟之頻譜圖……………………………….58
圖4.10 偵測DNA有雜交之頻譜圖………………………………….59
圖4.11 偵測DNA無雜交之頻譜圖………………………………….59
圖4.12 DNA雜交重複性實驗之流程……………………………….60
圖4.13 DNA雜交重複性實驗之量測結果………………………….61
圖4.14 DNA雜交重複性之波長飄移與時間關係圖……………….61
圖4.15 波長飄移和時間之斜率與DNA雜交重複性之關係圖…….62
圖5.1 GMR結合微流道系統設計………………………………….63
圖5.2 GMR微流道陣列多工系統設計…………………………….63
參考文獻 參 考 文 獻
[1] R. W. Wood,“ On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag, 4, 396–402 (1902).
[2] A. Hessel and A. A. Oliner,“ A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
[3] S. S. Wang and R. Magnusson,“ Guided-mode resonances in planar dielectric -layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1464–1468 (1990).
[4] G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[5] L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[6] L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[7] I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt, 36, 1527 (1989).
[8] A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light Modulation with Resonant Grating-Waveguide Structures,“ Opt. Lett. 21, 1564-1567 (1996).
[9] S. S. Wang and R. Magnusson, ‘‘Theory and applications of guidedmode resonance filters,’’ Appl. Opt. 32, 2606–2613 (1993).
[10] K. Fu, Z. Wang, Q. Zhang, J. Zhang and Y. Nie, ‘‘The resonance peak theory of reflection guided-mode resonance filters,’’ Chin. J. Lasers B 8, 313–321 (1999).
[11] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young and R. Magnusson,“ High efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
[12] A. Sharon, D. Rosenblatt and A. A. Friesem,” Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14 (11), 2985-2993 (1997).
[13] B. Cunningham, P. Li, B. Lin and J. Pepper,” Colorimetric resonant reflection as a direct biochemical assay technique, ” Sensors & Actuators: B. Chemical 81, 316–328 (2002).
[14] B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper and B. Hugh,” A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions, ” Sensors & Actuators: B. Chemical 85 219–228 (2002).
[15] Brian Cunningham, Jean Qiu, Peter Li and Bo Lin,” Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sensors & Actuators: B. Chemical 87, 365–370 (2002).
[16] Bo Lin, Jean Qiu, John Gerstenmeier, Peter Li, Homer Pien, Jane Pepper and Brian Cunningham,” A label-free optical technique for detecting small molecule interactions,” Biosensors and Bioelectronics 17, 827-/834 (2002).
[17] Livache Thierry, Bazin Hervé, Caillat Patrice and Roget André,” Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips ,” Biosensors and Bioelectronics 13 (6), 629-634 (1998).
[18] J. Cahill Dolores,” Protein and antibody arrays and their medical applications,” J. of Immunological Methods 205 (1-2), 81-91 (2001).
[19] Sirpa E. Huuskonen, Mark E. Hahn and Pirjo Lindström-Seppä,”A fish hepatoma cell line (PLHC-1) as a tool to study cytotoxicity and CYP1A induction properties of cellulose and wood chip extracts,” Chemosphere 36(14), 2921-2932 (1998).
[20] K. Harby,” Genes on a chip for tissue expression and HIV study,” Molecular Medicine Today 2 (8), 317 (1996).
[21] Kang, Joo H.; Park, Je-Kyun,” Development of a microplate reader compatible microfluidic device for enzyme assay,” Sensors & Actuators: B. Chemical 107 (2), 980-985 (2005).
[22] Yong Huang and Boris Rubinsky,” Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation,” Sensors and Actuators A: Physical 104(3), 205-212 (2003).
[23] Klaus Zimmermann, Thomas Eiter and Friedrich Scheiflinger,” Consecutive analysis of bacterial PCR samples on a single electronic microarray ,” J. of Microbiological Methods 55(2), 471-474 (2003).
[24] Rahman, M.; Li, X. P.; Zhang, X. D.; Seah, K. H. W. ,” A three-dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters,” International J. of Machine Tools and Manufacture 35(7), 1015-1031 (1995).
[25] Dostálek, Jakub; Homola, Jirí; Miler, Miroslav,” Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sensors & Actuators: B. Chemical 107(1), 154-161 (2005).
[26] J. Obeid Pierre and K. Christopoulos Theodore,” Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection,” Analytica Chimica Acta 494 (1-2), 1-9 (2003).
[27] Yeon Ju Hun and Park Je-Kyun,”Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip,” Analytical Biochemistry 341 (2), 308-315 (2005).
[28] Szirányi Tamás,” Texture recognition using a superfast cellular neural network VLSI chip in a real experimental environment,” Pattern Recognition Letters 18 (11-13), 1329-1334 (1997).
[29] Jeonggi Seo and Luke P. Lee,” Disposable integrated microfluidics with self-aligned planar microlenses,” Sensors and Actuators B: Chemical 99(2-3), 615-622 (2004).
[30] David A. Wicks and Paul C.H .Li,” Separation of fluorescent derivatives of hydroxyl-containing small molecules on a microfluidic chip,” Analytica Chimica Acta 507(1), 107-114 (2004).
[31] Byoung Chan Kim, Kyeong Seo Park, Sang Don Kim and Man Bock Gu,” Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay,” Biosensors and Bioelectronics 18(5-6), 821-826 (2003).
[32] Solinas-Toldo S, et al.,” Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalance,” Genes Chromosomes Cancer 20, 399–407(1997).
[33] Jiri Homola, Sinclair S. Yee and Gunter Gauglitz,” Surface Plasmon Resonance Sensors: Review”, Sensors and Actuators B 54, 3-15 (1999).
[34] Ya Nie, Lei Wang, Zhiheng Wang and Chengjun Lai, “ Beam selector dependent on incident angle by guided-mode resonant subwavelength grating,” Opt. Eng. 41, 2966-2969 (2002).
[35] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470-1474 (1990).
[36] M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. So. Am. A 71, 811-818 (1981).
[37] T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
[38] S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
[39] Samuel T. Thurman and G. Michael Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42, 3225-3233 (2003).
[40] Linda A. Chrisey, Gil U Lee and C. Elizabeth O’Ferrall,” Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Research 24, 3031-3039 (1996).
[41] 王志豪, ”單股DNA與微奈米溝槽電擊之基因晶片上固定化與雜交效率之最佳化,”碩士論文,國立中央大學化學工程與材料工程所,2005。
指導教授 張正陽(Jeng-Yang Chang) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明