博碩士論文 92246004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.140.185.147
姓名 簡汎清(Fan-Ching Chien)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 奈米電漿子感測技術於生物分子之功能分析
(Nanoplasmonic Sensing for Biomolecular Function Analysis)
相關論文
★ 表面結構擴散片之設計、製作與應用★ 結合柱狀透鏡陣列之非成像車頭燈光型設計
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究
★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測★ 發光二極體導光機構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 表面電漿子共振(surface plasmon resonance,SPR)生物感測技術於界面環境變化具有高的靈敏度且不需外加任何標記等優勢,目前已廣泛的被應用於生物分子交互作用分析(biomolecular interaction analysis,BIA)研究,傳統SPR生物感測技術的偵測極限已達1 pg/mm2的生物分子表面覆蓋率,不過仍難以直接偵測極微小分子量或極低濃度分子間交互作用。另外,SPR只能提供BIA之動力學資訊,然一完整對生物分子辨識系統除提供動力學分析外,更應具有偵測構形改變之能力。
因此,本論文研究發展奈米電漿子(nanoplasmons)技術來解決上述兩個關鍵問題。分別利用圖樣化金奈米粒子或次波長(subwavelength)結構來操控粒子電漿子(particle plasmons,PPs)或局域表面電漿子(localized surface plasmons,LSPs)以提昇感測靈敏度,控制嵌入金奈米團簇(nanoclusters)於介電質膜層的粒徑與體積分率以強化電漿子生物感測器約有十倍的靈敏度並可實現極微量待測分子(<200 Da)交互作用的直接偵測生物分析程序且不需大分子量的競爭分子或額外標記;研發次波長光柵建構耦合波導表面電漿共振(coupled waveguide-surface plasmon resonance,CWSPR)生物感測器不僅維持感測靈敏度且可改善量測精度,沒有傳統衰逝全反射(attenuated total refelection,ATR)耦合器的限制,其感測系統於蛋白微陣列晶片或影像系統應用上將較為靈活和可行。此外,研發一個建構於Kretschmann組態的CWSPR生物感測器具有同時耦合SPR模態及波導模態的雙CWSPR模態,除了可動態提供高靈敏的動力學分析之外,更具有直接即時地監測蛋白分子構形變化的能力。因此,對於快速診斷,藥物研發與蛋白質體學(proteomics)研究等將可建立嶄新的奈米電漿子之生物分子功能分析平台。
摘要(英) Surface plasmon resonance (SPR) biosensing has become a standard practice in the investigation of biomolecular interaction analysis (BIA), because it is highly sensitive to the resonance condition on the sensing surface caused by environmental changes and do not require any extrinsic labeling. However, the detection sensitivity of the current practical SPR biosensors is limited to 1 pg/mm2 surface coverage of biomolecules, which is insufficient for the monitoring of low concentrations of small biomolecular analytes. In addition, the conventional SPR biosensor only can provide a high-sensitivity kinetic analysis in the BIA, not conformational information. However, a more powerful biorecognition system is required not only to provide the kinetic analysis, but also to have the capability of monitoring biomolecular conformational change or trend.
Therefore, in this dissertation, nanoplasmons technology was reserched and developed to overcome two above critial tasks. Patternized gold nanoparticle-enhanced plasmonic effects and subwavelength metal nanostructure are used to manipulate particle plasmons (PPs) and localized surface plasmons (LSPs) and enhance the biosensor sensitivity, respectively. The sensitivity of plasmonic biosensors was enhanced about 10-fold by controlling the size and volume fraction of the embedded Au nanoclusters in dielectric films and a direct detection bioassay can be adopted to analyze the interactions of tiny analytes (< 200 Da) in low concentrations without the need for high molecular weight competitors or explicit labeling. Furthermore, a coupled waveguide-surface plasmon resonance (CWSPR) biosensor constructed with subwavelength grating structure not only retains the same sensing sensitivity as that of a conventional SPR device, but also yields sharper dips in the reflectivity spectrum and therefore provides an improved measurement precision. Moreover, without the limitation of a conventional attenuated total reflection (ATR) coupler and with the help of normal incidence, the system is more flexible and feasible for protein microarray and imaging applications. In addition, a CWSPR biosensor based on the Kretschmann configuration couples the surface plasmon mode and waveguide mode and generates two CWSPR modes in the reflectivity spectrum. The CWSPR device not only provides the high-sensitivity kinetic data dynamically, but also has the capability of monitoring biomolecular conformational change. Hence, the nanoplasmonic sensing will be novel biosensing platform for biomolecular function analysis in the fast diagnostic, drug discovery, and proteomics study.
關鍵字(中) ★ 生物分子交互作用分析
★ 生物感測器
★ 次波長光柵
★ 耦合波導表面電漿共振
★ 粒子電漿子
★ 表面電漿子
★ 奈米電漿子
關鍵字(英) ★ subwavelength grating
★ biomolecular interaction analysis
★ biosensor
★ nanoplasmons
★ coupled waveguide-surface plasmon resonance
★ surface plasmons
★ particle plasmons
論文目次 摘要 I
Abstract III
謝誌 V
目錄 VII
圖目 XI
表目 XXI
符號 XXIII
第一章 緒 論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 6
1.3.1 生物分子構形變化分析 7
1.3.2 靈敏度強化效應 9
1.3.3 次波長金屬結構操控奈米電漿子效應 11
1.4 論文架構 13
第二章 電漿子效應 15
2.1 表面電漿子 15
2.1.1 表面電漿子之激發 15
2.1.2 多層膜組態之Fresnel方程式及色散關係式 26
2.1.3 光柵激發效應 34
2.2 粒子電漿子 43
2.2.1 粒子電漿子之激發 43
2.2.2 電磁場之近場強化作用 45
第三章 耦合波導表面電漿共振生物感測器 53
3.1 各種模態之表面電漿共振生物感測器 53
3.1.1 傳統表面電漿共振生物感測器 53
3.1.2 長距離表面電漿共振生物感測器 57
3.1.3 耦合電漿波導共振生物感測器 61
3.2 耦合波導表面電漿共振生物感測器之研製 66
3.2.1 理論分析 66
3.2.2 設計與製作 73
3.2.3 衰逝全反射生醫感測儀 77
3.3 生物分子功能之分析 79
3.3.1 生物分子層之折射率及厚度量測 80
3.3.2 蛋白分子構形變化之分析 85
第四章 奈米粒子強化之電漿子生物感測器 91
4.1 奈米粒子強化電漿子生物感測器之研製 91
4.1.1 理論分析 91
4.1.2 設計與製作 94
4.2 超高靈敏度之感測效應 110
4.2.1 超高解析度之分析 112
4.2.1 直接監測微小生物分子交互作用 118
第五章 次波長光柵之表面電漿共振生物感測器 125
5.1 以次波長光柵建構之光波導生物感測器 125
5.1.1 設計與製作 126
5.1.2 光學量測系統 135
5.1.3 生醫感測分析 138
5.2 以次波長光柵建構之耦合波導表面電漿共振生物感測器 146
5.2.1 電磁場強化分析 146
5.2.2 感測器製作 152
5.2.3 光學量測系統 153
5.2.4 生醫感測試驗 153
第六章 結論 159
參考文獻 161
英文索引 171
參考文獻 1. A.P.F .Turner, “Biosensors—sense and sensitivity,” Science 290, 1315-1317, (2000).
2. S.S. Iqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, and, J.P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549-578 (2000).
3. T. Vo-Dinh, B. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” Fresenius J. Anal. Chem. 366, 540-551, (2000).
4. H. Nakamura, I. Karube, “Current research activity in biosensors,” Anal. Bioanal. Chem. 377, 446-468 (2003).
5. P. Angenendt, “Progress in protein and antibody microarray technology,” Drug Discov. Today 10, 503-511, (2005).
6. M.A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1, 515-528 (2002).
7. F.S. Ligler, and C.AR. Taitt, edited, Optical Biosensors: Present and Future, Amsterdam: Elsevier, 2002.
8. M.V. Voinova , M. Jonson, and B. Kasemo, “‘Missing mass effect in biosensor’s QCM applications,” Biosens. Bioelectron. 17, 835-841 (2002).
9. S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, “Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes,” Anal. Chem. 76, 1083-1088 (2004).
10. R. M. T. de Wildt, C. R. Mundy, B. D. Gorick, and I. M. Tomlinson, “Antibody arrays for high-throughput screening of antibody-antigen interactions,” Nat. Biotechnol. 18, 989-994, (2000).
11. G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).
12. B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004. 1-0004.13 (2001).
13. J. Homola, and S.S. Yee, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54, 3-15 (1999).
14. R. L. Rich, and D.G. Myszka, “Advances in surface plasmon resonance biosensor analysis,” Curr. Opin. Biotechnol. 11, 54-61 (2000).
15. A. V Zayats, and I. I Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
16. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883-1933 (2005).
17. S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101-1-011101-10 (2005).
18. J. Tominaga, and D. P. Tsai, Optical Nanotechnologies The Manipulation of Surface and Local Plasmons, Berlin: Springer-Verlag, 2003.
19. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
20. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
21. D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13-22 (2003).
22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wo, “Extraodinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
23. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
24. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano lett. 5, 2262-2267 (2005).
25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer-Verlag, 1988.
26. J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, “Angular-interrogation attenuated total reflection metrology system for plasmonic sensors,” Appl. Opt. 44, 6155-6162 (2005).
27. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein,” J. Colloid. Interf. Sci. 143, 513-526 (1991).
28. R. Karlsson, and R. Stahlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228, 274-280 (1995).
29. J. Piehler, A. Brecht, G. Gauglitz, C. Maul, S. Grabley, and M. Zerlin, “Specific binding of low molecular weight ligands with direct optical detection,” Biosens. Bioelectron. 12, 531-538 (1997).
30. R. Karlsson, K.-M. Mari, M. D. Hämäläinen, A. Remaeus, K. Andersson, P. Borg, E. Gyzander, and J. Deinum, “Biosensor analysis of drug-target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors,” Anal. Biochem. 278, 1-13 (2000).
31. P.-O. Markgren, M. Hämäläinen, and U.H. Danielson, “Kinetic analysis of the interaction between HIV-1 protease and inhibitors using optical biosensor technology,” Anal. Biochem. 279, 71-78 (2000).
32. C. Nakamura, Y. Inuyama, K. Shirai, N. Sugimoto, J. Miyake, “Detection of porphyrin using a short peptide immobilized on a surface plasmon resonance sensor chip,” Biosens. Bioelectron. 16, 1095-1100 (2001).
33. D.G. Myszka, “Analysis of small-molecule interactions using Biacore S51 technology,” Anal. Biochem. 329, 316-323 (2004).
34. K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series 9, 25-78 (1987).
35. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4, 299-304 (1983).
36. J. M McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5, 572-577 (2001).
37. R. Mukhopadhyay, “Surface plasmon resonance instruments diversify,” Anal. Chem. 77, 313A–317A (2005).
38. A. MJJ Bonvin, R. Boelens, and R. Kaptein, “NMR analysis of protein interactions,” Curr. Opin. Chem. Biol. 9, 501-508 (2005).
39. M. Kataoka, I. Nishii, T. Fujisawa, T. Ueki, F. Tokunaga, and Y. Goto, “Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering,” J. Mol. Biol. 249, 215-228 (1995).
40. N. Keegan, N. G. Wright, and J. H. Lakey, “Circular dichroism spectroscopy of folding in a protein monolayer,” Angew. Chem. Int. Ed. 44, 4801-4804 (2005).
41. M. Futamata, “Coadsorbed state of uracil, water and sulfate species on the gold electrode surface,” Chem. Phys. Lett. 317, 304-309 (2000).
42. E. A. Jares-Erijman, and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387-1395 (2003).
43. K. A. Peterlinz, and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130, 260-266 (1996).
44. R. Georgiadis, K. P. Peterlinz, and A. W. J. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122, 3166-3173 (2000).
45. F. S. Damos, R. C. S. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602-609 (2005).
46. H. Sota, and Y. Hasegawa, “Detection of conformational changes in an immobilized protein using surface plasmon resonance,” Anal. Chem. 70, 2019-2024 (1998).
47. S. Boussaad, J. Pean, and N. J. Tao, ” High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222-226 (2000).
48. J. Xiang, J. Guo, and F. Zhou, “Scanning electrochemical microscopy combined with surface plasmon resonance: studies of localized film thickness variations and molecular conformation changes,” Anal. Chem. 78, 1418-1424 (2006).
49. 易政男,藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器,中央大學光電所,九十四學年博士論文。
50. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonance: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791-2797 (1997).
51. J. Davies edited, Surface Analytical Techniques for Probing Biomaterial Processes, Boca Raton: CRC Press, 1996.
52. G. H. Cross, A. A. Reeves, S. Brand, and J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383-390 (2003).
53. G. J. Kovacs, and G. D. Scott, “Optical excitation of surface plasma wave in layered media,” Phys. Rev. B 16, 1297-1311 (1977).
54. G. J. Kovacs, and G. D. Scott, “Attenuated total reflection angular spectra and associated resonant electromagnetic oscillations of a dielectric slab bounded by Ag films,” Appl. Opt. 17, 3314-3322 (1978).
55. D. Sarid, “Long-range surface-plasma aves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
56. A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380-382 (1983)
57. F.-C. Chien, and S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
58. M. Faraday, “Experimental relations of gold(and other metals to light,” Phil. Trans. R. Soc. 147, 145-181 (1857).
59. K.C. Lee, S.T. Pai, Y.C. Chang, M.C. Chen, and W.-H. Li, “Optimum massthickness of Ag-nanoparticle film for surface enhanced Raman scattering,” Mater. Sci. Eng. B 52, 189-194 (1998).
60. P.-T. Leung, D. Pollard-Knight, G.P. Malan, and M.F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuat. B 22, 175-180 (1994).
61. H. Xu, and M. Kall, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuat. B 87, 244-249 (2002).
62. G. Kalyuzhny, A. Vaskevich, M.A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chem. Eur. J. 8, 3850-3857 (2002).
63. Y. Sun, and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297-5305 (2002).
64. C.L. Haynes, and R.P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596-10604 (2002).
65. L.A. Lyon, M.D. Musick, and M.J. Natan, ”Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177-5183 (1998).
66. C. S. Thaxton, and C. A. Mirkin, “Plasmon coupling measures up,” Nat. Biotechnol. 23, 681-682 (2005).
67. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag. 4, 396-408 (1902).
68. A. Yariv, and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Elect. 13, 233-253 (1977).
69. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley-Interscience, 1984.
70. K. Tiefenthaler and W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 10, 137-139 (1984).
71. K. Tiefenthaler, and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209-220 (1989).
72. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
73. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 107, 820-822 (2002).
74. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
75. J. Brvo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
76. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
77. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A.A.G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature, 2, 229-232 (2003).
78. P. Andrew and W.L. Barnes, “Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons,” Science 306, 1002-1005 (2004).
79. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085-1088 (2004).
80. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399-1402 (2005).
81. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuat. B 81, 316-328 (2002).
82. M. Wiki, and R. E. Kunz, “Wavelength-interrogated optical sensor for biochemical applications,” Opt. Lett. 25, 463-465 (2000).
83. K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuat. B 91, 241-251 (2003).
84. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, W. W. Webb, “ Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
85. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20,4813-4815 (2004).
86. M. G. Moharam, and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981).
87. M. G. Moharam, and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction - E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
88. M. G. Moharam, and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982).
89. E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am. A 19, 702-715 (2002).
90. J. B. Harris, T. W. Preist, J. R. Sambles, R. N. Thorpe, and R. A. Watts, ‘‘Optical response of bigratings,’’ J. Opt. Soc. Am. A 13, 2041-2049 (1996).
91. L. Li, ‘‘New formulation of the Fourier modal method for crossed surface-relief gratings,’’ J. Opt. Soc. Am. A 14, 2758-2767 (1997).
92. V. Bagnoud and S. Mainguy, ‘‘Diffraction of electromagnetic waves by dielectric crossed gratings: a three-dimensional Rayleigh-Fourier solution,’’ J. Opt. Soc. Am. A 16, 1277-1285 (1999).
93. M. Bagieu and D. Maystre, ‘‘Regularized Waterman and Rayleigh methods: extension to two-dimensional gratings,’’ J. Opt. Soc. Am. A 16, 284-292 (1999).
94. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995.
95. A. D. Boardman edited, Electromagnetic Surface Modes, New York: Wiley, 1982.
96. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
97. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
98. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods, Singapore: World Scientific, 1990.
99. Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, Boston: Artech House, 1990.
100. Allen Taflove, Computational electrodynamics: the finite-difference time-domain method, Boston: Artech House, 1995.
101. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
102. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
103. S. Kawata edited, Near-Field Optics and Surface Plasmon Polaritons, Berlin: Springer-Verlag, 2001.
104. K. A. Peterlinz, and R. Georgiadis, “In situ kinetics of self-assembly by surface plasmon resonance spectroscopy,” Langmuir 12, 4731-4740 (1996).
105. J.-J. Chyou, C.-S. Chu, F.-C. Chien, T.-L. Yeh, and S.-J. Chen, “Precise determination of dielectric constant and thickness of nanolayer using surface plasmon resonance sensing and multi-experiment linear data analysis,” accepted for publishing, Appl. Opt. (2006).
106. J.-J.Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, S.-J. Chen, and C.-F. Shu, “Fabrication and metrology of an electro-optic polymer light modulator based on aveguide-coupled surface plasmon resonance,” Opt. Eng. 44, 034001-1-034001-10 (2005).
107. F.-C. Chien, and S.-J. Chen, “Direct determination of the refractive index and thickness of bio-layer based on two coupled waveguide-surface plasmon resonance modes,” Opt. Lett. 31, 187-189 (2006).
108. 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,1999。
109. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
110. L. Fesus, and M. Piacentini, “Transglutaminase 2: an enigmatic enzyme with diverse functions,” Trends Biochem. Sci. 27, 534-539 (2002).
111. R. Casadio, E. Polverini, P. Mariani, F. Spinozzi, F. Carsughi, A. Fontana, P. P. de Laureto, G. Matteucci, and C. M. Bergamini, “The structural basis for the regulation of tissue transglutaminase by calcium ions,” Eur. J. Biochem. 262, 672-679 (1999).
112. A. D. Venere, A. Rossi, F. D. Matteis, N. Rosato, A. F. Agro, and G. Mei, “Opposite effects of Ca2+ and GTP binding on tissue transglutaminase tertiary structure,” J. Biol. Chem. 275, 3915-3921 (2000).
113. P. Mariani, F. Carsughi, F. Spinozzi, S. Romanzetti, G. Meier, R. Casadio, and C. M. Bergamini, “Ligand-induced conformational changes in tissue transglutaminase: Monte Carlo analysis of small-angle scattering data,” Biophys. J. 78, 3240-3251 (2000).
114. J. E. Gestwicki, H. V. Hsieh, and J. B. Pitner, “Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance,” Anal. Chem. 73, 5732-5737 (2001).
115. S.-J. Chen, F.-C. Chien, G. Y. Lin, and K. C. Lee, “Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles,” Opt. Lett. 29, 1390-1392 (2004).
116. 林俊佑,表面電漿子與粒子電漿子強化之光電生物感測器,中央大學機械所,九十二學年碩士論文。
117. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. London A. 203, 358-420 (1904); A. 205, 237-288 (1906).
118. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. (Leipzig) 24, 636-679 (1935).
119. T. Ung, L.M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids Surf. A 202, 119-126 (2002).
120. 黃崑財,嶄新表面電漿子感測元件,中央大學光電所,九十二學年碩士論文。
121. M. A. Hayat edited, Colloidal Gold Principles, Methods, and Applications, 1, San Diego: Academic Press, 1989.
122. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.
123. P. Yaish, A. Gazit, C. Gilon, and A. Levitzki, “Blocking of EGF-dependent cell proliferation by EFG receptor kinase inhibitors,” Science 242, 933-935 (1988).
124. A. Levitzki, and A. Gazit, “Tyrosine kinase inhibition: an approach to drug development,” Science 267, 1782-1788 (1995).
125. B. T. Houseman, J. H. Huh, S. J. Kron, and M. Mrksich, “Peptide chips for the quantitative evaluation of protein kinase activity,” Nat. Biotech. 20, 270-274 (2002).
126. J. Schlessinger, “A solid base for assaying protein kinase activity,” Nat. Biotech. 20, 232-233 (2002).
127. F.-C. Chien, K.-T. Huang, C.-Y. Lin, and S.-J. Chen, “Direct detection of tiny ligand interacted with antibody based on plasmonic biosensors,” Proc. SPIE 5703, 107-117 (2005).
128. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with sub-wavelength gratings,” Appl. Opt. 45, 1938-1942 (2006).
129. R.E. Kunz, J. Duebendorfer, Miniature integrated optical wavelength analyzer chip, Opt. Lett. 20, 2300-2303 (1995).
130. http//www.gsolver.com/
指導教授 孫慶成、陳顯禎
(Ching-Cherng Sun、Shean-Jen Chen)
審核日期 2006-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明