博碩士論文 92246013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.222.69.248
姓名 賴郁暉(Yuh-Hui Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低偏壓、高光電效率的微結構光感測器之研究
(The High Photoelectric Conversion Capability of Micro-structured Optical Sensor with Low Bias Voltage)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本論文利用標準0.35μm互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS )製程技術,直接實現ㄧ具潛在可量產、低偏壓及高光電效率的微結構光感測器(Optical Sensor)。微結構光感測器依其結構可分成「電流式主動感光元件(Current Active Optical Sensor,CAOS)」 和「電壓式主動感光元件 (Voltage Active Optical Sensor,VAOS)」 兩部份。
在元件的設計理念上,CAOS為一整合傳統之光電二極體於標準負極金屬氧化物半導體(Negative Metal Oxide Semiconductor,NMOS)閘極區域之新型元件結構,藉由元件特殊設計可將光電二極體所產生之光產生電洞累積至NMOS閘極,除了可降低原本NMOS導通時所需之外加閘極偏壓外(即有助於壓抑元件暗電流),更可經由NMOS來放大整體元件的光電流輸出;VAOS為整合一具有將光電流直接轉換成光電壓功能之光偵測器於標準NMOS閘極區域,特別的是VAOS可經部分的製程步驟設計後,正極金屬氧化物半導體(Positive Metal Oxide Semiconductor,PMOS)部份將被視為一類光電二極體,藉由電荷耦合電壓來控制NMOS,同樣也不需輔助放大電路即可直接做有效的放大電流輸出,可直接將CMOS當作光偵測器使用。所以經過元件特別之設計,CAOS及VAOS皆可於低偏壓條件下操作,不需再外接訊號放大電路,有別於傳統上感光元件之電流放大方式,可達到較小元件面積設計及減少整體功率消耗以外,CAOS及VAOS還皆兼具內建感測陣列中之像素選擇(Pixel Selection)功能,有利於元件組成影像感測陣列。
實驗結果證明,所設計元件除了具有輸出電流直接放大效應的優勢(可提高至少一百倍),也有效增加了光響應能力(Photoresponsivity);元件設計除了改善光電轉換效率以外,其操作電壓更可壓低至0.25 V,遠小於一般之工作偏壓1 V,這將非常適合應用於手持移動式的產品。另外,設計VAOS元件時所需要之光電壓直接產生元件其光電壓增加量也同時被量測而得知,直接就證明了論文所提出之光電元件結構可滿足將光電流直接轉換成光電壓輸出,不需利用傳統的電阻性負載或是額外聯接一轉阻放大電路(Trans-impedance Amplifier,TIA)來實現一電壓輸出之目的;同時,此光電壓之存在更進一步提供了CAOS或是VAOS可低壓操作之證據。
因CAOS及VOAS獨特的結構,可組合出較傳統元件面積為小的設計,而且優秀的光電特性以及不更動標準製程步驟的設計理念,除了具有可低成本量產之優勢外,也使得本論文的元件結構設計可立即與CMOS周邊支援電路順利整合並實際應用於許多需要偵測光強度之應用上。
摘要(英) In this study, low voltage operation and high photoelectric conversion capability of optical sensors, Current Active Optical Sensor (CAOS) and Voltage Active Optical Sensor (VAOS), were proposed and realized using a standard 0.35 μm Complementary Metal Oxide Semiconductor (CMOS) process technology .
In the design concept for CAOS, that is integrated conventional photodiode with standard Negative Metal Oxide Semiconductor (NMOS), gate bias voltage of NMOS can be reduced to maintain the amplification capability of NMOS by the existence of photo generation holes accumulated within the gate region of NMOS. The VAOS was consisted of a standard NMOS for enlarging photocurrent and a novel photodetector which can be realized by a modified Positive Metal Oxide Semiconductor (PMOS) for providing photo-voltage output above the gate electrode of NMOS to reduce the gate bias voltage. Therefore, the CMOS structure benefits design of VAOS. CAOS and VAOS not only provide low bias operation potentially but also differ from the conventional optical sensor on the photocurrent amplification for enhance photoelectric conversion further. Additionally, CAOS and VAOS own the pixel selection function intrinsically through the n-well bias of PMOS and drain voltage of NMOS as these devices are employed in the application of image sensing array.
Experimental results show that the output of the design elements in addition to the advantages of direct current amplification effect (can be increased by at least a hundred times), but also effectively increase the Photoresponsivity. The component designs can not only improve the photoelectric conversion efficiency, in which an operating voltage but also down to 0.25 V, the work is far less than the general bias 1 V, which is very suitable for handheld mobile products. And the photo-voltage was also measured in the novel optical sensor of VAOS to confirm the mechanism about converting photocurrent into photo-voltage without any resistance loading and external circuit like trans-impedance amplifier (TIA). At the same time, the measured photo-voltage provides strong evidence for low bias voltage operation in CAOS and VAOS benefiting the immunity of gate leakage and the reduction of power consumption.
CAOS and VAOS due to the unique structure of the more traditional elements can be combined area of small design , and have excellent optical characteristics and process steps without changing the standard design, in addition to having the advantages of low-cost mass production, but also make this paper design elements can be immediately supported with CMOS circuits smooth integration of peripheral and actually used in many applications need to detect the light intensity.
關鍵字(中) ★ 互補式金屬氧化物半導體
★ 光感測器
★ 低偏壓
★ 光電效率
關鍵字(英) ★ CMOS
★ Optical Sensor
★ Low Bias Voltage
★ Photoelectric Conversion Capability
論文目次 摘要...............................i
Abstract.........................iii
謝誌...............................v
目錄..............................vi
圖目.............................viii
表目..............................xii
符號對照表........................xiii
第一章 緒論.........................1
1.1 前言...........................1
1.2 發展近況.......................3
1.3 研究動機與目的..................5
1.4 論文架構.......................7
第二章 感測元件設計之參考資料..........9
2.1光電二極體 (photodiode)..........9
2.1.1半導體p-n接面能帶原理...........9
2.1.2 p-n接面光伏效應..............10
2.1.3光電二極體操作原理.............11
2.1.4光電流與暗電流.................12
2.1.5響應速率和量子效率.............14
2.2 MOS操作基本原理................15
2.2.1操作偏壓.....................15
2.2.2通道電阻.....................17
2.2.3 MOS能帶圖...................19
2.2.4電容-電壓特性................23
2.3一般感測器的主要特性參數..........25
第三章 感測元件的設計及分析..........29
3.1 元件設計概念...................29
3.1.1電流式主動感光元件(Current Active Optical Sensor, CAOS)
.............................29
3.1.2電壓式主動感光元件(Voltage Active Optical Sensor, VAOS)
.............................35
3.2理論導證與推論..................37
3.3程式模擬結果....................40
3.4 元件製備......................43
3.4.1傳統CMOS製程流程圖............43
3.4.2本論文之元件製程流程圖.........44
3.4.3實驗與量測分析設備.............48
3.4.4感測器的主要參數測試...........50
第四章 元件量測分析與討論............52
4.1 電流式主動感光元件(CAOS)........52
4.1.1 輸出電流....................52
4.1.2 通道電阻....................57
4.1.3 操作電壓的最佳化選擇..........59
4.1.4 光電效率....................61
4.2 電壓式主動感光元件(VAOS)........63
4.2.1 光電流輸出................. .63
4.2.2 操作電壓範圍.................66
4.2.3 透光面積對於光電流的影響.......69
4.2.4 光電效率....................70
4.2.5 光頻譜響應..................72
4.3 元件特性比較與討論..............73
第五章 結論與未來展望...............83
參考文獻..........................86
參考文獻 [1] H. S.Wong, R. T. Chang, E. Crabbe, and P. Agnello, “CMOS active pixel image sensors fabricated using a 1.8-V, 0.25 μm CMOS technology”, IEEE Trans. Electron Devices, vol. 45, pp. 889–894, Apr. 1998.
[2] S. G. Wuu, H. C. Chien, D. N. Yaung, C. H. Tseng, C. S. Wang, C. K. Chang, and Y. K. Hsiao“, A high performance active pixel sensor with 0.18 μm CMOS color imager technology,” in Proc. IEDM Tech. Dig., pp. 555–558, 2001.
[3] O. Yadith-Pecht, R. Etienne-Cummings, “CMOS imagers: From phototransduction to image processing” , Kluwer Academic Publishers, 2004.
[4] A. El Gamal and H. Eltoukhy, “CMOS image sensor” , IEEE Circuit and Devices Mag., vol. 21, no.3, pp.6-20, May.-Jun. 2005.
[5] H. S. P. Wong, “CMOS image sensors–Recent advances and device scaling considerations,” in IEEE IEDM Tech. Dig., pp.201-204, 1997.
[6] L. D. Garrett, J. Qi, C. L. Schow, and J. C. Campbell, “A Silicon-Based Integrated NMOS-p-i-n Photoreceiver”, IEEE Transactions on Electron Devices, vol. 43, no. 3, pp. 411-416, Mar. 1996.
[7] Rosezin et al, “Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays”, EDL, vol. 32, Issue: 2, pp. 191-193, 2011.
[8] Philip E. Allen, Douglas R. Holberg, “CMOS Analog Circuit Design”, Oxford University Press, 2010.
[9] G. Meinhardt, J. Kraft, B. Loffler, H. Enichlmair, G. Rohrer, E. Wachmann, M. Schrems, R. Swoboda, C. Seidl, and H. Zimmermann, “High-Speed Blue-, Red-, and Infrared-Sensitivity Photodiode Integrated In A 0.35 μm SiGe:C-BiCMOS Process”, Technical Digest of IEEE International Electron Devices Meeting, pp. 803-806, Dec. 2005.
[10] Ching-Hua Wang et al, “Three-Dimensional 4F2 ReRAM With Vertical BJT Driver by CMOS Logic Compatible Process” , IEEE Trans. Electron Devices, vol. 58, no. 8, p. 53-58, Aug. 2011.
[11] Jungho Shin et al, “TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application”, J. Appl. Phys., 109, 033712, 2011.
[12] Xin Ming, Ying-qian Ma, Ze-kun Zhou, and Bo Zhang,“ A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors”, IEEE Transactions on circuits and systems II : Express Briefs, vol. 57, pp.767-771, 2010.
[13] M. Bigas, E. Cabruja, J. Forest, J. Salvi, “Review of CMOS image sensors”, Microelectronics Journal, vol. 37 ,pp. 433–451, 2006.
[14] T. Yin, A. M. Pappu, and A. B. Apsel, “Low-Cost, High-Efficiency, and High-Speed SiGe Phototransistor in Commercial BiCMOS”, IEEE Photonics Technology Letters, vol. 18, no. 1, pp.55–57, Jan., 2006.
[15] S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, and J. C. Compbell, “High-Speed Monolithically Integrated Silicon Photoreceivers Fabricated in 130-nm CMOS Technology,” IEEE Journal of Lightwave Technology, vol. 20, no. 9, pp.1724–1729, Sep., 2002.
[16] Hsiu-Yu Cheng and Ta-Chin King, “A CMOS Image Sensor With Dark-Current Cancellation and Dynamic Sensitivity Operations”, IEEE Trans. Electron Devices, vol.50, no.1, pp. 91-95, Jan. 2003.
[17] Kuang-Sheng Lai, Ji-Chen Huang, and Klaus Y.-J. Hsu, “Design and Properties of Phototransistor Photodetector in Standard 0.35μm SiGe BiCMOS Technology”, IEEE Electron on Electron Devices, vol. 55, no. 3, pp. 774-781, Mar. 2008.
[18] Na Sun and Robert Sobot,“A low-power low-voltage bandgap reference in CMOS”, Electrical and Computer Engineering, 23rd, pp. 1-5, 2010
[19] A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Paul, and H. Baltes, “Uncooled low-cost thermal imager using micromachined CMOS integrated sensor array,” Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Sendai, Japan, 1999.
[20] Michael S-C Lu, Dong-Hang Liu, Li-Sheng Zheng and Sheng-Hsiang Tseng, “CMOS micromachined structures using transistors in the subthreshold region for thermal sensing,” J. Micromech. Microeng. vol.16, pp. 1734-1739, 2006.
[21] Igor Shcherback, Alexander Belenky and Orly Yadid-Pecht , “Empirical dark current modeling for Complementary metal oxide semiconductor active pixel sensor,” Society of Photo-Optical Instrumentation Engineers, 2002.
[22] H. D. Lee and J. M. Hwang, “Accurate Extraction of Reverse Leakage Current Components of Shallow Silicided p+-n Junction for Quarter- and sub-Quarter-Micron MOSFETs, ”, IEEE Trans. Electron Devices, vol. 45, No. 8, Aug.1998.
[23] W. Shockley, M. Sparks, and G. K. Teal, “p-n Junction Transistor”, Physics Review, vol. 83, pp. 151-164, 1951.
[24] Hsiu-Yu Cheng, “A Novel CMOS Photon Sensing Device With Dark Current Cancellation and Dynamic Sensitivity”, MS. Thesis, Institute of Electronics Engineering, National Tsing Hua University, 2002.
[25] K. Yoon, C. Kim, B. Lee, and D. Lee, “Single-chip CMOS image sensor for mobile applications,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 36–38, 2002.
[26] Chung-Yu Wu et al., “Design, Optimization, and Performance Analysis of New Photodiode Structures For CMOS Active-Pixel-Sensor Imager Applications,” IEEE Sensor Journal, vol. 4, no. 1 , Feb. 2004.
[27] Weiquan Zhang and Mansun Chan, ”Properties and Design optimization of Photodiodes Available in a current CMOS Technology,” IEEE Hong Kong Electron Devices Meeting, pp. 22-25, 1998.
[28] Yuan Heng Tseng et al, “A New High-Density and Ultra small-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits”, IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 53-58, Jan. 2011.
[29] Rosezin et al, “Crossbar Logic Using Bipolar and Complementary Resistive Switches”, EDL, vol. 32, Issue: 6, pp. 710-712, 2011.
[30] A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, and H. Zimmermann, “Integrated BiCMOS p-i-n Photodetectors With High Bandwidth and High Responsivity”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1469-1475, Nov.r/Dec., 2006.
[31] Chia-NanYeh, “ High Performance CMOS Image Sensor System”, Ph.D. Thesis, Department of Electrical Engineering, National Cheng Kung University, 2010.
[32] J. Guo and S. Sonkusale, “A High Dynamic Range CMOS Image Sensor for Scientific Imaging Applications”, IEEE Sensors Journal, vol. 9, Issue 10, Oct. 2009.
[33] S. Kawahito, “Signal Processing Architectures for Low-Noise High-Resolution CMOS Image Sensors”, IEEE Custom Intergrated Circuits Conference, pp. 695-702, 2007.
[34] Chun-Lung Hsu, Chen-Wei Lan, Yu-Chih Lo and Yu-Sheng Huang, “Adaptive de-noising filter algorithm for CMOS image sensor testing applications,” in Proc. Defect and Fault Tolerance in VLSI Systems, pp.136-143, 6-8 Oct. 2010.
[35] Jun-Myung Woo, Hong-Hyun Park, Sung-Min Hong, In-Young Chung, Hong Shick Min, and Young June Park, “Statistical Noise Analysis of CMOS Image Sensors in Dark Condition”, IEEE Transactions On Electron Devices, vol. 56, no.11, pp. 2481-2488, Nov. 2009.
[36] Kuang-Sheng Lai, Ji-Chen Huang, and Klaus Y.-J. Hsu, “Design and Properties of Phototransistor Photodetector in Standard 0.35μm SiGe BiCMOS Technology”, IEEE Electron on Electron Devices, vol. 55, no. 3, pp. 774-781, Mar. 2008.
[37] J. Yang, K. G. Fife, L. Brooks, C. G. Sodini, A. Betts, P. Mudunuru and H.-S. Lee, “A 3MPixel low-noise flexible architecture CMOS image sensor,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 496-497, Feb. 2006.
[38] A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, and H. Zimmermann, “Integrated BiCMOS p-i-n Photodetectors With High Bandwidth and High Responsivity”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1469-1475, Nov./Dec. 2006.
[39] D. Cristea, P. Cosmin and F.Craciunoiu, “High-responsivity silicon photodetectors for optoelectronic integrated systems”, Proceedings. International Semiconductor Conference, vol. 1, pp. 215-218, Oct. 1996.
[40] L. Lizarraga, S. Mir and G. Sicard, “Evaluation of a BIST Technique for CMOS Imagers,” in Proc. Asian Test Symposium, pp.378-383, Oct. 2007.
[41] Kuang-Sheng Lai, Ji-Chen Huang, and Klaus Y.-J. Hsu, “High Responsivity Photodetector in Standard SiGe BiCMOS Technology”, IEEE Electron Device Letters, vol. 28, no. 9, pp. 800-802, Sep. 2007.
[42] Y. Nitta, et al., “High-speed digital double sampling with analog CDS on column parallel ADC architecture for low-noise active pixel sensor,” in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 500-502, Feb. 2006.
[43] M. Yang, K. Rim, D. L. Rogers, J. D. Schaub, J. J. Welser, D. M. Kuchta, D. C. Boyd, F. Rodier, P. A. Rabidoux, J. T. Marsh, A. D. Ticknor, Q. Yang, A. Upham, and S. C. Ramac, “A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector”, IEEE Electron Device Letters, vol. 23, no. 7, pp. 395-397, Jul. 2002.
[44] X. Gong, M. Tong, Y. Xia, W. Wanzhu, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm”, Science, vol. 325, pp.1665-1667, Sep. 2009.
[45] S. M. Sze, “Semiconductor Device: Physics and Technology”, John Wiley & Sons Inc., 2nd Edition, 2003 .
[46] Robert E. Fischer, Biljana Tadic-Galeb, Paul Yoder, “Optical System Design”, McGraw-Hill Education, 2nd Edition, 2008.
[47] http://www.ndl.org.tw/web/index.html
指導教授 李正中(Cheng-Chung Lee) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明