博碩士論文 92246021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.221.129.19
姓名 李宗憲(Tsung-Xian Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化鎵發光二極體之光萃取效率分析與晶片設計
(The Light Extraction Analysis and Chip Design for GaN-based Light-Emitting Diodes)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) LED光萃取效率受到許多因素限制,這些因素彼此相互獨立,又相互影響。基於此,我們以蒙地卡羅光追跡法為基礎,提出一套模擬LED光萃取特性的定量分析模型,研究氮化鎵LED光萃取與光損耗之機制。此外,我們也利用封裝實驗驗證蒙地卡羅方法之模擬結果的精準度。
在本論文中,共有五項主題進行探討,包含主動層吸收與光子循環效應、晶片幾何尺寸、電極與電流分佈、封裝以及微結構等。首先,我們分析主動層吸收對光萃取效率之影響,並在模擬中考慮光子循環效應,結果顯示擁有光萃取結構的LED對主動層吸收的敏感度比一般LED高。其次,我們分析LED幾何尺寸對光萃取效率之影響,結果顯示晶片塑形與圖案式基板適用於小晶片;而表面粗糙化的薄膜氮化鎵結構則適用於大晶片,其中藍寶石基板的建議厚度為50~100um。接著,我們分析電極與電流分佈對光萃取效率之影響,結果顯示光子易被p型電極所阻擋並吸收,為了避免此效應發生,整合高反射率電極、電流阻檔層以及底部反射鏡粗化等技術可有效提升光萃取效率。我們亦探討封裝對光萃取效率之影響,從光學的
觀點,圖案式基板對覆晶接合提升光萃取效率最有效益,而封裝透鏡尺寸必須比晶片大2.5倍才可以有效將光完全萃取出來。另外,增加封裝材料的折射率比增加光萃取結構更有顯著效益。最後,為了增加光萃取效率,我們針對微結構對光萃取效率之影響進行分析與優化,結果顯示微結構主要是藉由光來回反射循環的方式獲得高光萃取效率,因此元件底部的反射率是微結構提升光萃取效率的重要關鍵。
摘要(英) The light extraction efficiency of light-emitting diodes (LEDs) is limited by many effects. For this reason, we present a quantitative analysis model for LED light extraction characteristics based on Monte Carlo ray tracing method, According to this model, the light extraction and loss mechanisms in GaN-based LEDs is studied. We furthermore verify the validity of the Monte Carlo simulation results by packaging experiments at low temperature.
In the thesis, there are five topics is discussed in detail. First at all, we analyze the issue of absorption in active layer, the simulation also take into account the effect of photon recycling. According to the simulation results, the light extraction efficiency of LED with light extraction structure is more sensitive to active layer absorption than that of typical LED. Secondly, the realistic geometry of chip scale is analyzed. According to the simulation results, the structure of chip shaping and patterned substrate is suitable for small chip, and the ThinGaN LED with Surface texture is suitable for large chip. Besides, the suggested thickness for sapphire substrate is 50~100um. Then we analyze the issue of contact and current spreading. The results show that the light extraction efficiency decreases due to the shadow effect of the p-contact while the current crowds near the p-contact. In order to overcome this effect, the light extraction efficiency can be greatly improved by integrating high reflectivity contact, current blocking layer and diffused bottom mirror. We also compare the light extraction efficiency of LED packaging with bare chip. From the optical point of view, the patterned substrate should be regarded as the most effective way in enhancing light extraction efficiency in an encapsulated flip-chip LED. Besides, the diameter of encapsulant lens must be larger 2.5 times than chip size, and to increase the encapsulant’s refractive index usually is more effective at improving light extraction efficiency than light extraction structure. Finally, in order to improve light extraction efficiency, the LED with micro-structure is analyzed and optimized. The simulation results show that the light extraction efficiency is improved by multiple reflections and reflected scattering in a LED chip, so that increasing reflectivity of the bottom mirror is an important key factor.
關鍵字(中) ★ 封裝
★ 電流分佈
★ 微結構
★ 光萃取效率
★ 發光二極體
★ 氮化鎵
關鍵字(英) ★ Package
★ Current Spreading
★ Micro-Structure
★ Light Extraction Efficiency
★ Light-Emitting Diode
★ GaN
論文目次 摘 要……………………………………………………………………. I
Abstract………………………………………………………………….. III
目 錄……………………………………………………………………. V
圖索引……………………………………………………………………. VI
表索引……………………………………………………………………. XII
第一章 緒論……………………………………………………………... 1
1.1 研究背景……….....…………………..………………………... 2
1.2 研究動機與目的………………….....…………...…………….. 4
1.3 論文大綱與架構……………….………………………………. 6
第二章 氮化鎵LED 元件與其光學特性………..…………...……........ 8
2.1 LED 晶片與封裝………………..……..………………………... 8
2.2 LED 發光原理…….……………………..…………………....... 16
2.3 LED 發光效率………….………………..…………………....... 20
2.4 LED 光萃取機制……….….…………………...……………….. 23
2.5 LED 光萃取結構……...……....……...….................................... 30
第三章 LED 光萃取模型之建立與驗證………………..…………....... 35
3.1 LED 光萃取效率之模擬方法……….…..…………………....... 35
3.2 LED 光萃取模型之建立……..….………..……………….......... 38
3.3 LED 光萃取模型之驗證…………...…..………………….......... 47
第四章 LED 光萃取特性之研究………………………..…………........ 52
4.1 主動層吸收對光萃取效率之影響….......................................... 52
4.1.1 主動層吸收效應……….….………………………………. 52
4.1.2 光子循環效應…………..…………………………………. 58
4.2 晶片尺寸對光萃取效率之影響………....…………………….. 62
4.3 電極配置對光萃取效率之影響……………………………….. 67
4.3.1 電流分佈與電極遮蔽效應……..…………………………. 67
4.3.2 解決方案分析…………………………..……..…………... 71
4.4 封裝技術對光萃取效率之影響………………………....…….. 76
4.4.1 打線接合與覆晶接合...………..………………...…………. 76
4.4.2 鏡反射與漫反射………………….……………...…………. 79
4.4.3 封裝膠材與透鏡….…………….……...…………………… 81
4.5 微結構對光萃取效率之影響…………………………....…….. 85
第五章 結論……………………………………………………………... 98
參考文獻……………………………………………………………......... 101
中英文名詞對照表…………………………………………………......... 111
參考文獻 [1]A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting, John Wiley & Sons, New York (2002).
[2]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” IEEE J. Selected Topics in Quantum Electron 8, 310-320 (2002).
[3]E. F. Schubert and J. K. Kim, “Solid-state light sources becoming smart,” Science 308, 1274-1278 (2005).
[4]H. J. Round, “A note on carborundum,” Electrical world 49, 309-310 (1907).
[5]N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[6]A. A. Bergh and P. J. dean, Light emitting diodes, Clarendon Press, Oxford (1976).
[7]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G., Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[8]H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High- efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl Phys. Lett. 58, 1010-1012 (1991).
[9]H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[10]Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[11]I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N. Sawaki, “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properites of GaN and Ga1-xAlxN (0 ="" [12]i.="" akasaki,="" h.="" amano,="" k.="" hiramatsu,="" and="" n.="" sawaki,="" “high="" efficiency="" blue="" led="" utilizing="" gan="" film="" with="" aln="" buffer="" layer="" inst.="" phys.="" conf.="" ser.="" 91,="" 633-636="" (1988).
="" [13]h.="" m.kito,="" i.="" “p-type="" conduction="" in="" mg-doped="" treated="" low-energy="" elecron="" beam="" irradiation,”="" jpn.="" appl.="" 28,="" l2112-l2114="" [14]s.="" nakamura,="" t.="" mukai,="" m.="" senoh,="" iwasa,="" “thermal="" annealing="" effects="" p-type="" films,”="" 31,="" l139-l142="" (1992).
="" [15]s.="" “high-brightness="" ingan="" algan="" double-heterostructure="" blue-green-light-emitting="" diodes,”="" 76,="" 8180-8191="" (1994).
="" [16]s.="" s.="" nagahama,="" yamada,="" “superbright="" green="" single-quantum-well-structure="" light-enmitting="" 34,="" l1332-l1335="" (1995).
="" [17]y.="" shimizu,="" sakano,="" y.="" noguchi,="" moriguchi,="" “light="" emitting="" device="" having="" a="" nitride="" compound="" semiconductor="" phosphor="" containing="" garnet="" fluorescent="" material,”="" u.s.="" patent="" 5,998,925="" (1999).
="" [18]optoelectronics="" industry="" development="" association="" (oida),="" light="" diodes="" (leds)="" for="" general="" illumination:="" an="" oida="" technology="" roadmap="" update="" 2002.="" optoelectronics="" assn.,="" washington="" dc="" (2002).
="" [19]i.="" schnitzer,="" e.="" yablonovitch,="" c.="" caneau,="" gmitter,="" “ultrahigh="" spontaneous="" emission="" quantum="" efficiency,="" 99.7%="" internally="" 72%="" externally,="" from="" algaas="" gaas="" double="" heterostructures,”="" lett.="" 62,="" 131-133="" (1993).
="" [20]i.="" carneau,="" a.="" scherer,="" “30%="" external="" surface="" textured,="" thin-film="" 63,="" 2174-2176="" [21]m.="" r.="" krames,="" ochiai-holcomb,="" g.="" hofler,="" carter-coman,="" chen,="" i.-h.="" tan,="" p.="" grillot,="" f.="" gardner,="" chui,="" j-w.="" huang,="" s.a.="" stockman,="" kish,="" craford,="" “high-power="" truncated-="" pyramid="" (alxga1-x)0.5="" in0.5p="" gap="" light-emitting="" exhibiting="">50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365-2367 (1999).
[22]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315-2317 (2001).
[23]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93, 9383-9385 (2003).
[24]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Danbaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-base light emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
[25]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379-3381 (2001).
[26]R. Windisch, C. Rooman, M. Kuijk, B. Dutta, G. H. Dohler, G. Borghs, and P. Heremans, “Micro-lensed gigabit-per-second high-efficiency quantum-well light-emitting diodes,” Electron. Lett. 36, 351-352 (2000).
[27]R. Windisch, M. Kuijk, B. Dutta, A. Knobloch, P. Kiesel, G. H. Doehler, G. Borghs, and P. L. Heremans, “Nonresonant-cavity light-emitting diodes,” Proc. SPIE 3938, 70-76 (2000).
[28]R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler, and P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography,” IEEE Trans. Electron Devices 47, 1492-1498 (2000).
[29]R. Windisch, S. Meinlschmidt, C. Rooman, L. Zimmermann, B. Dutta, M. Kuijk, P. Kiesel, G. H. Doehler, G. Borghs, and P. L. Heremans, “Light extraction mechanisms in surface-textured light-emitting diodes,” Proc. SPIE 4278, 90-98(2001).
[30]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315-2317 (2001).
[31]W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett. 72, 1360-1362 (1999).
[32]Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Danbaars, and S. Nakamura, “Roughening hexagonal surface morphology on Laser lift-off (LLO) N face GaN with simple photo-enhanced chemical wet etching,” Jap. J. Appl. Phys. 43, L637-L639 (2004).
[33]M. Boroditsky, T. F. Krauss, R. Cocciloli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystal,” Appl. Phys. Lett. 75, 1306-1308 (1999).
[34]M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E.Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin slab photonic crystals,” Appl. Phys. Lett. 23, 1036-1038 (1999)
[35]D. Kim, C. Cho, Y. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508-203511 (2005).
[36]P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K.Mishra, A. W. Sazler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444-2446 (1999).
[37]I. D. Goepfert, E. F. Schubert, A. Osinsky, P. E. Norries, and N. N. Faleev, “Experimental and theoretical study of acceptor activation and transport,” J. Appl. Phys. 88, 2030-2038 (2000).
[38]K. Kumakura and N. Kobayashi, “Increased electrical activity of Mg-Acceptors in AlxGa1-xN/GaN superlattices,” Jpn. J. Appl. Phys. 38, L1012–L1014 (1999).
[39]K. Kumakura, T. Makimoto, and N. Kobayashi, “Efficient hole generation above 1019 cm-3 in Mg-Doped InGaN/GaN superlattices at room temperature,” Jpn. J. Appl. Phys. 39, L195–L196 (2000).
[40]T. Nishida, H. Saito, and N. Kobayashi, “Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice,” Appl. Phys. Lett. 78, 399-400 (2001).
[41]Lumileds Lighting, http://www.lumileds.com.
[42]Osram Opto Semiconductors, http://www.osram-os.com
[43]D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. DenBaars, U. K. Mishra, and S. Nakamura,” Hexagonal truncated pyramidal light emitting diodes through wafer bonding of ZnO to GaN, laser lift-off, and photo chemical etching,” Jpn. J. Appl. Phys. 47, 3447-3449 (2008).
[44]A. A. Bergh and R. H. Saul, “Surface Roughness of Electroluminescent,” U.S. Patent 3,739,217 (1973).
[45]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
[46]S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching,” IEEE Photo. Techno. Lett. 18, 2472-2474 (2006).
[47]M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
[48]Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light-emitting diodes,” Jpn. J. Appl. Phys. 45, L1084-L1086 (2006).
[49]D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photo. Techno. Lett. 18, 1406-1408 (2006).
[50]M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E.Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin slab photonic crystals,” Appl. Phys. Lett. 23, 1036-1038 (1999).
[51]S. J. Lee, “Design reles for high-brighness light-emitting diodes grown on GaAs substrate,” Jpn, J. Appl. Phys. 37, 509-516 (1998).
[52]S. J. Lee, “Analysis of InGaN high-brighness light-emitting diodes,” Jpn. J. Appl. Phys. 37, 5990-5993 (1998).
[53]W. B. Joyce, R. Z. Bachrach, R. W. Dixon, and D. A. Sealer, “Geometrical properties of random particles and the extraction of photons from electroluminescent diodes,” J. Appl. Phys. 45, 2229-2253 (1974).
[54]Z.-Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[55]S. J. Lee and S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” Proc. SPIE 3621, 237-248 (1999).
[56]S. J. Lee, “Analysis of light-emitting diode by Monte Carlo photo simulation,” Appl. Opt. 40, 1427-1437 (2001).
[57]K. M. Leung and Y. F. Liu,“Photonic band structures: the plane-wave method,” Phy. Rev. B 41, 10188-10190 (1990).
[58]K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE. Trans. Antennas. Propag. 14, 302-307 (1966).
[59]J. P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problems,” IEEE. Trans. Antennas. Propag. 44, 110-117 (1996).
[60]J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185-200 (1994)
[61]R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Modern. Opt. 41, 295-310 (1994)
[62]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light, Princeton University, Princeton (1995).
[63]J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, and J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” MRS Internet J. Nitride Semicond. Res. 4S1, G5.2 (1999).
[64]H. Kim, S. J. Park, and H. Hwang,” Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. 77, 1903-1904 (2002).
[65]A. Ebong, S. Arthur, and E. Downey,” Device and circuit modeling of GaN/InGaN light emittinh diodes for optimum current spreading,” Solid-State Electronics 47, 1817-1823 (2003).
[66]K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045-1047 (1992).
[67]F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Steigerwald, K. G.Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Veryhigh-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839-2841 (1994).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明