博碩士論文 92322031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.191.202.249
姓名 盧志杰(Chih-Chieh Lu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 隧道受震反應分析之研究
(Study on Seismic Analysis of Tunnel)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究首先摘要回顧目前各種地下結構物受震分析方法,並檢討各種分析方法之優劣,再從中建議出修正強制變形法與動態歷時分析法,並詳細說明與探討其分析流程與相關數值細節,包括土壤組成模式的測試、水壓激發模式之開發、邊界條件、邊界距離、網格大小、界面元素、地震動之模擬等。再將之與本研究建議之簡化結構元素非線性模式相結合,使所建議之地下結構物受震分析法可完整考慮土壤與結構非線性互制行為。最後再進行一系列真實或假設隧道受震案例之比較分析,以探究各種隧道受震情況下之行為反應,並藉以驗証所建議地下結構物受震分析法之合理性。由分析結顯示,所建議之分析方法可完整地掌握隧道受震時的非線性行為反應,當運用在新三義隧道與日本大開隧道受震分析時,可合理地模擬出隧道塌陷破壞的行為。所評估的耐震能力亦與真實情況相近,顯示所建議之方法具有相當良好的實用性與合理性。就分析方法適用性而言,比較分析結果與隧道實際受震情況後,對於岩石隧道,所建議的修正強制變形法與動態歷時分析法均有良好的模擬效果。但是對於軟土隧道或是位在具液化潛能土層內的隧道則較適合採用動態歷時分析。
摘要(英) This research proposed modified cross section racking deformation (MCSRD) method and dynamic time history analysis to deal with the complicated problem of underground structure subject to seismic loading. The analysis procedures and several numerical key points of the proposed methods were discussed and studied in detail with several model examples. A simplified model for simulating nonlinear mechanic behavior of structure has been developed and combined into the two proposed methods for fully considering nonlinear interaction of tunnel and ground during analysis.
The proposed nonlinear approaches were examined by several real or assumed cases of underground structures subject seismic loading, and the nonlinear collapse behavior of Daikai subway station during 1995 Kobe earthquake and the spalling of second lining of new Sanyi railway tunnel during 1999 Chi-Chi earthquake were satisfyingly simulated. Based on the results, the second lining should be suitably reinforced in seismic area. Dynamic time history analysis is needed for the tunnel embedded in liquefiable soil and the shallow tunnel in soft soil where the inertial force of tunnel structure plays an important role.
關鍵字(中) ★ 土壤液化
★ 慣性力
★ 地盤變位
★ 土壤結構互制
★ 隧道
★ 非線性
關鍵字(英) ★ tunnel
★ nonlinear
★ soil structure interaction
★ soil liquefaction
★ inertial force
★ ground deformation
論文目次 摘要………………………………………………………………………..…........… I
ABSTRACT…………………………………………………………………......... II
目錄……………………………………………………………………………….... IV
表目錄………………………………………………………………………….….. XI
圖目錄………………………………………………………………………..….. XIII
第一章 前 言 1
1.1 研究目的與動機 1
1.2 研究內容與流程 2
1.3 論文架構 4
第二章 隧道損害機制與案例探討 6
2.1 隧道受力的來源 6
2.1.1 初始應力 6
2.1.2 地震力 8
2.1.3 特殊情況 10
2.1.3.1 土壤液化 10
2.1.3.2 邊坡穩定 13
2.1.3.3 斷層 15
2.2 隧道震後受損破壞的型態與討論 18
2.3 世界各地隧道受震事件之回顧 21
2.3.1 美國 21
2.3.1.1 舊金山港灣捷運系統 (San Francisco BART) 21
2.3.1.2 阿拉米達沉埋管隧道 (Alameda Tubes) 22
2.3.1.3 洛杉磯地鐵 (Los Angeles Metro) 23
2.3.2 日本 24
2.3.2.1 關東地震 (1923) 24
2.3.2.2 伊豆-大島地震 (1978) 25
2.3.2.3 神戶地震 (1995) 26
2.3.2.4 新瀉地震 (2004) 30
2.3.3 台灣 32
2.3.4 土耳其 40
2.4 小結 42
第三章 地下結構受震分析方法之介紹與比較 43
3.1 動態地震土壓力法 (Dynamic earthquake pressure method) 43
3.2 強制變形法 (Cross section racking deformation method, CSRD) 46
3.2.1 地盤變位的解析解 49
3.2.2 地盤變位的數值解 51
3.2.3 小結 52
3.3 簡化構架分析模式 (Simplified frame analysis model) 54
3.3.1 隧道軸向變形與受力 55
3.3.2 隧道斷面橫向變形與受力 (圓形隧道) 59
3.3.2.1 Wang (1993) 61
3.3.2.2 Penzien (2000) 63
3.3.2.3 解析解正確性之驗証 66
3.3.3 隧道斷面橫向變形與受力 (矩形隧道) 69
3.3.4 小結 77
3.4 修正強制變形法 (Modified cross section racking deformation method, MCSRD) 78
3.5 動態歷時分析法 81
3.6 各隧道受震分析方法之比較 84
第四章 修正強制變形法 (MCSRD) 87
4.1 修正強制變形法 (MCSRD)之分析流程 89
4.1.1 建立數值分析模型 89
4.1.2 逐步施加剪變形於模型邊界 90
4.1.3 檢核襯砌受力與變形並調整襯砌降伏彎矩 90
4.1.4 檢核輸入剪變形是否達設計值 91
4.2 數值分析程式之驗證 94
4.2.1 均向壓縮的情況 96
4.2.2 剪切的情況 98
4.3 修正強制變形法(MCSRD)之相關探討 100
4.3.1 土壤材料組成模式的選擇 100
4.3.1.1 岩石隧道 101
4.3.1.2 軟土隧道 103
4.3.1.3 不同土壤組成模式之比較 104
4.3.2 隧道襯砌之數值模擬 108
4.3.2.1 梁元素非線性行為之模擬 110
4.3.2.2 梁元素非線性行為之數值測試 111
4.3.3 邊界距離 113
4.3.4 地層剪應變形加載形式之選擇 117
4.3.5 剪變形加載之邊界設定 118
4.3.6 剪變形加載速率 123
4.3.7 土壤-結構界面元素之探討 128
4.3.7.1 完全不滑動與完全滑動界面的數值模擬 129
4.3.7.2 完全滑動與不滑動界面對於分析結果的影響 130
4.3.7.3 建議的界面處理方式 133
4.3.8 特殊情況 134
4.4 示範案例說明 136
4.4.1 二次襯砌施築時機之探討 142
4.4.2 襯砌斷面配筋之成效 147
4.5 小結 151
第五章 動態歷時分析法 153
5.1 擬靜態分析法之弱點 154
5.1.1地震作用下之慣性力 154
5.1.2 土壤阻尼效應 155
5.1.3 土壤液化 155
5.1.4 水壓的消散行為 156
5.2 動態歷時分析法的分類 156
5.2.1 總應力歷時分析法 157
5.2.2 有效應力歷時分析法 157
5.3 動態歷時分析要點 159
5.3.1 地震歷時的選擇與處理 159
5.3.2 數值網格尺寸的要求 163
5.3.3 邊界的設定 164
5.3.3.1 吸能邊界 (Quite boundary) 164
5.3.3.2 自由場邊界 (Free-field boundary) 166
5.3.4 阻尼的設定 168
5.3.5 土壤組成模式 170
5.3.5.1 修正Finn模式之基本土壤組成模式 171
5.3.5.2 孔隙水壓激發模式 172
5.4 案例分析 179
5.4.1 動態總應力歷時分析案例 179
5.4.2 動態有效應力歷時分析案例 188
5.5 小結 195
第六章 隧道受震案例分析 196
6.1 舊三義鐵路隧道 (岩石隧道) 197
6.1.1 隧道所在位置與沿線地形 197
6.1.2 隧道沿線地質情況 198
6.1.3 地層參數 201
6.1.4 隧道概況 201
6.1.4.1 覆土厚度 201
6.1.4.2 斷面與襯砌 202
6.1.5 修正強制變形分析 205
6.1.5.1 數值分析模型 205
6.1.5.2 震時土壤-結構互制行為 206
6.1.5.3 隧道耐震能力之評估 209
6.1.6 隧道耐震能力評估結果之檢核 213
6.2 新三義鐵路隧道 (岩石隧道) 221
6.2.1 隧道所在位置與沿線地形 221
6.2.2 隧道沿線地質情況 222
6.2.3 地質參數 225
6.2.4 隧道概況與施工情形 226
6.2.5 隧道震後調查與震害因素檢討 230
6.2.6 修正強制變形分析 236
6.2.6.1 數值分析模型 236
6.2.6.2 震時岩盤-結構互制行為 239
6.2.6.3 震時襯砌降伏行為之發展與討論 241
6.2.7 襯砌斷面配筋之成效 243
6.3 日本大開地鐵(Daikai subway)(軟土隧道) 247
6.3.1 隧道概況 247
6.3.2 隧道附近地質情況與相關地質參數 249
6.3.5 修正強制變形分析 252
6.3.5.1 數值分析模型 252
6.3.5.2 震時土壤-結構互制行為 259
6.3.6 動態歷時分析 263
6.3.6.1 數值分析模型 263
6.3.6.2 震時土壤-結構互制行為 265
6.3.6.3 震時隧道塌陷之機制與討論 267
6.3.6.4 垂直向地震力之影響 270
6.3.7 修正強制變形分析與動態歷時分析之差異 276
6.3.7.1 修正強制變形分析下隧道的受力情況 276
6.3.7.2 動態歷時分析下隧道的受力情況 280
6.3.8 小結 284
6.4 液化地層中之隧道 285
6.4.1 數值分析模型 286
6.4.2 液化土層中潛盾隧道之受震反應 289
6.4.2.1 液化土層之受力行為 289
6.4.2.2 液化後潛盾隧道之變形行為 292
6.4.2.3 潛盾隧道附近之水壓分佈 302
6.4.2.4 受震過程中潛盾隧道之受力行為 304
6.4.2.5 隧道受力安全性檢核 310
6.4.3 小結 313
第七章 結論與建議 315
7.1 結論 315
7.2 建議 317
參考文獻 318
附錄A 328
參考文獻 1 Akai, K., Bray, J.D., Boulanger, R.W., Christian, J.T., Finn, W.D.L., Hardder, L.F., Idriss, I.M., Ishihara, K., Iwasaki, Y.T., Mitchell, J.K., Moriwaki, Y., Nakagawa, K., O’Rourke, T.D., Seed, R.B., Sitar, N., Soga, K., Somerville, P., Towhata, I., and Youd, T.L., 1995, “Geotechnical reconnaissance of the effects of the January 17, 1995, Hyogoken-Nanbu earthquake, Japan,” Report No. UCB/EERC-95/01, Earthquake Engineering Research Center, College of Engineering, University of California at Berkeley, Berkeley, Calif.
2 Asakura, T. and Sato, Y., 1996, “Damage to mountain tunnels in hazard area,” Japanese Geotechnical Society – Special Issue of Soils and Foundation, pp. 301-310.
3 Aydingun, O. and Adalier, K., 2003, “Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part I. Benchmark model,” Canadian Geotechnical Journal, Vol. 40, No. 4, pp. 753-765.
4 Azizian, A. and Popescu, R., 2001, “Backanalysis of the 1929 ground bank submarine slope failure,” Proc. 54th Canadian Geotechnical Conf., Calgary, Alberta, pp. 808-815.
5 Byrne, P.M., 1991, “A cyclic shear-volume coupling and pore pressure model for sand,” Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Mo., Vol. 1, pp. 47-55.
6 Byrne, P.M., Park, S.S., Beaty, M., Sharp, M., Gonzalez, L., and Abdoun, T., 2004, “Numerical modeling of liquefaction and comparison with centrifuge tests,” Canadian Geotechnical Journal, Vol. 41, No. 2, pp. 193-211.
7 Cundall, P.A., Hansteen, H., Lacasse, S., and Selnes, P.B., 1980, “NESSI – soil structure interaction program for dynamic and static problems,” Report No. 51508-9, Norwegian Geotechnical Institute.
8 Earthquake Engineering Research Center (EERC), Internet reference: http://nisee.berkeley.edu/elibrary/.
9 Earthquake Engineering Research Institute (EERI), 1990, “Loma Prieta earthquake reconnaissance report,” Earthquake Sptectra, EERI, Vol. 6.
10 Earthquake Engineering Research Institute (EERI), 1995, “Northridge earthquake reconnaissance report,” Earthquake Sptectra, EERI, Vol. 11.
11 Gemant, A. and Jackson, W., 1937, “The measurement of internal friction in some solid dielectric materials,” The London, Edinburgh, and Dublin Philosophical Magazine & Journal of Science, Vol. 22, pp. 960-983.
12 Geotechnical Earthquake Engineering Server (GEES), 2002, Internet reference: http://geoinfo.usc.edu/gees/.
13 Hashash, Y.M.A., Hook, J.J., Schmidt, B., and Yao, J.I.C., 2001, “Seismic design and analysis of underground structures,” Tunneling and Underground Space Technology, Vol. 16, pp. 247-293.
14 Hashash, Y.M.A., Park, D., and Yao, J.I.C., 2005, “Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures,” Tunneling and Underground Space Technology, Vol. 20, pp. 435-441.
15 Hoeg, K., 1968, “Stresses against underground structural cylinders,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, pp. 833-858.
16 Hoek, E. and Brown, E.T., 1980, Underground excavations in rock, Instn Min. Metall., London.
17 Hwang, J.H. and Lu, C.C., 2007, “Seismic capacity assessment of old Sanyi railway tunnels,” Tunnelling and Underground Space Technology, Vol. 22, pp. 433-449.
18 Idriss, I.M. and Seed, H.B., 1968, “Seismic response of horizontal soil layers,” J. Soil Mech. Found. Div., ASCE, Vol. 94, No. SM4, pp. 1003-1031.
19 Iida, H., Hiroto, T., Yoshida, N., and Iwafuji, M., 1996, “Damage to Daikai subway station,” Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995, Hyogoken-Nambu Earthquake, Japanese Geotechnical Society, pp. 283-300.
20 Itasca Consulting Group Inc., 2000, “FLAC, version 4.0. Itasca Consulting Group Inc.,” Minneapolis, Minn.
21 Itasca Consulting Group Inc., 2005, “FLAC, version 5.0. Itasca Consulting Group Inc.,” Minneapolis, Minn.
22 Japanese Society of Civil Engineers (JSCE), 1975, Specifications for earthquake resistant design of submerged tunnels.
23 Kawasumi, H., 1951, “Measures of earthquake danger and expectancy of maximum intensity through Japan as inferred from the seismic activity in historical times,” Bull. Earthquake Res. Inst., Vol. 29, pp. 469-482.
24 Khoshnoundian, F. and Shahrour, I., 2002, “Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils,” Soil and Foundations, Vol. 42, No. 6, pp. 1-8.
25 Kiyomiya, O., 1995, “Earthquake-resistant design features of immersed tunnels in Japan,” Tunneling Underground Space Technology, Vol. 10, No. 4, pp. 463-475.
26 Kontogianni, V.A. and Stiros, S.C., 2003, “Earthquake and seismic faulting: effects on tunnels,” Turkish Journal of Earth Sciences, Vol. 12, pp. 153-156.
27 Kozak, A., Sedarat, H., and Krimotat, A., 1999, “Alameda tubes seismic retrofit studies,” Computers and Structures, Vol. 72, pp. 233-252.
28 Kuesel, T.R., 1969, “Earthquake design criteria for subways,” Journal of the Structural Divisions, ASCE, Vol. 95, No. ST6, pp. 1213-1231.
29 Kuhlemeyer, R.L. and Lysmer, J., 1973, “Finite element method accuracy for wave propagation problem,” J. Soil Mech. & Foundations, Div., ASCE, Vol. 99, No. SM5, pp. 421-427.
30 Kunar, R.R., Beresford, P.J., and Cundall, P.A., 1977, “A tested soil-structure model for surface structures,” Proceedings of the Symposium on Soil-Structure Interaction, Roorkee University, India, Vol. 1, pp. 137-144.
31 Lin, H.I., Mohri, Y., Kawabata, T., Liu, H., Burke, C., and Sun, L., 2003, “Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 12, pp. 1092-1101.
32 Liu, H. and Song, E., 2005, “Seismic response of large underground structures in liquefiable soil subjected to horizontal and vertical earthquake excitations,” Computers and Geotechnics, Vol. 32 , pp. 223-244.
33 Lu, C.C. and Hwang, J.H., 2008, “Damage of new Sanyi railway tunnel during the 1999 Chi-Chi Earthquake,” Geotechnical Special Publication, No. 181, ASCE.
34 Lysmer, J. and Kuhlemeyer, R.L., 1969, “Finite dynamic model for infinite media,” J. Eng. Mech., Vol. 95, No. EM4, pp. 859-877.
35 Lysmer, J., Udaka, T., Tsai, C.F., and Seed, H.B., 1975, “FLUSH: a computer program for approximate 3-D analysis of soil-structure interaction problems,” Report No. EERC 75-30, Earthquake Engineering Research Center.
36 Martin, G.R., Finn, W.D.L., and Seed, H.B., 1975, “Fundamentals of liquefaction under cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. 5, pp. 423-438.
37 Merritt, J.L., Monsees, J.E., and Hendron, A.J., 1985, “Seismic design of underground structures,” Proceedings of the 1985 Rapid Excavation Tunneling Conference, Vol. 1, pp. 104-131.
38 Mononobe, N., 1924, “Considerations on the vertical earthquake motion and some vibration problems,” Journal of the Japan Society of Civil Engineering, Vol. 15, No. 5, pp. 1063-1094. (In Japanese)
39 Monsees, J.E. and Merritt, J.L., 1991, “Earthquake considerations in design of the Los Angeles Metro,” Proceedings of the ASCE Conference on Lifeline Earthquake Engineering.
40 Newmark, N.M., 1968, “Problems in wave propagation in soil and rock,” Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earthquake Materials.
41 Okamoto, S., 1984, Introduction to earthquake engineering, 2nd ed., University of Tokyo Press, Tokyo, pp. 29-40.
42 Okamoto, S., Tamura, C., Kato, K., and Hamada, M., 1973, “Behaviors of submerged tunnels during earthquakes,” Proceedings of the Fifth World Conference on Earthquake Engineering, Rome, Italy, Vol. 1, pp. 544-553.
43 Owen, G.N. and Scholl, R.E., 1981, “Earthquake engineering of large underground structures,” Report No. FHWA/RD-80/195, Federal Highway Administration and National Science Foundation.
44 Park, S.S., Byrne, P.M., and Wijewickreme, D., 2005, “A swinging plane model for soil liquefaction analysis,” Proceeding of the Sixteenth International Conference on Soil Mechanics and Foundation Engineering, Osaka, Japan.
45 Parra-Montesinos, G.J., Bobet, A., and Ramirez, J.A., 2006, “Evaluation of soil-structure interaction and structural collapse in Daikai subway station during Kobe earthquake,” ACI Structural Journal, Vol. 103, No. 1, pp. 113-122.
46 Peck, R.B., Hendron, A.J., and Mohraz, B., 1972, “State of the art in soft ground tunneling,” Proceedings of the Rapid Excavation and Tunneling Conference, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, pp. 259-286.
47 Penzien, J., 2000, “Seismically indueced racking of tunnel linings,” Earthquake Engineering and Structural Dynamics, Vol. 29, pp. 683-691.
48 Penzien, J. and Wu, C., 1998, “Stresses in linings of bored tunnels,” Earthquake Engineering and Structural Dynamics, Vol. 27, pp. 283-300.
49 Power, M.S., Rosidi, D., and Kaneshiro, J., 1996, “Vol. III Strawman: screening, evaluation , and retrofit design of tunnels,” Report Draft, National Center for Earthquake Engineering Research, Buffalo, New York.
50 Prentice, C. and Ponti, D., 1997, “Coseismic deformation of the Wrights tunnel during the 1906 San Francisco earthquake: A key to understanding 1906 fault slip and 1989 surface ruptures in the southern Santa Cruz Mountains, California,” Journal of Geophysical Research, Vol. 102, pp. 635-648.
51 Rollins, K.M., Evans, M.D., Diehl, N.B., and Daily, W.D., 1998, “Shear modulus and damping relationships for gravels,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 396-405.
52 Schmidt, B. and Hashash, Y.M.A., 1998, “US immersed tube retrofit,” Tunnels Tunneling Int., Vol. 30, No. 11, pp.22-24.
53 Schnabel, P.B., Lysmer, J., and Seed, B.H., 1972, “SHAKE – a computer program for earthquake response analysis of horizontally layered sites,” Report No. EERC 72-12, University of California, Berkeley, CA, USA.
54 Schwartz, C.W. and Einstein, H.H., 1980, “Improved design of tunnel supports: vol. 1 – simplified analysis for ground – structure interaction in tunneling,” Report No. UMTA-MA-06-0100-80-4, US DOT, Urban Mass Transportation Administration.
55 Seed, H.B. and Idriss, I.M., 1970, “Soil moduli and damping factors for dynamic response analysis,” Report No. UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley.
56 SFBART, 1960, Technical Supplement to the Engineering Report for Trans-Bay Tube.
57 Shimizu, M., Suzuki, T., Kato, S., Kojima, Y., Yashiro, K., and Asakura, T., 2007, “Historical damages of tunnels in Japan and case studies of damaged railway tunnels in the mid Niigata Prefecture earthquakes,” Proceedings of the World Tunnel Congress 2007, London, pp. 1937-1943.
58 Southern California Earthquake Data Center (SCECDE), 2002, Internet reference: http://www.scecdc.sced.org/KCslides.html
59 St. John, C.M. and Zahrah, T.F., 1987, “Aseismic design of underground structures,” Tunneling Underground Space Technology, Vol. 2, No. 2, pp. 165-197.
60 Timoshenko, S. and Goodier, J.N., 1951, Theory of Elasticity, 2nd edn, McGraw-Hill, New York.
61 Uenishi, K. and Sakurai, S., 2000, “Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu (Kobe), Japan earthquake estimated from the failure of the Daikai underground station,” Earthquake Engineering and Structural Dynamics, Vol. 29, No. 6, pp. 813-821.
62 Wang, J.N., 1993, Seismic design of tunnels: a state-of-the-art approach, Monograph 7, Parsons Brinckerhoff Quade and Douglas Inc., New York.
63 Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R., and Huang T.H., 2001, “Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake,” Tunnelling and Underground Space Technology, Vol. 16, pp. 133-150.
64 Wang, Z.L., Egan, J., Scheibel, L., and Makdisi, F.I., 2001, “Simulation of earthquake performance of a waterfront slope using fully coupled effective stress approach,” Proceedings of the 2nd International FLAC Symposium on Numerical Modeling in Geomechanics, Ecully-Lyon, France, pp. 101-108.
65 Wegel, R.L. and Walther, H., 1935, “Internal dissipation in solids for small cyclic strains,” Physics, Vol. 6, pp. 141-157.
66 Woodward, P.K. and Molenkamp, F., 1999, “Application of an advanced multi-surface kinematic constitutive soil model,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 1995-2043.
67 Wu, Y.M., Shin, T.C., and Chang, C.H., 2001, “Near realtime mapping of peak ground acceleration and peak ground velocity following a strong earthquake,” Bull. Seism. Soc. Am., Vol. 91, pp. 1218-1228.
68 Zhang, J.. Andrus, R.D., and Juang, C.H., 2005, “Normalized shear modulus and material damping ratio relationships,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 4, pp. 453-464.
69 日本道路協會,2002,道路橋示方書.同解說,V耐震設計編,東京。
70 王文禮、王泰典,2000,「集集大地震三義壹號鐵路隧道震害因素探討」,中華技術學院慶祝改制週年論文發表研討會。
71 王文禮、王泰典、蘇灼謹、林峻弘、諶家瑞、黃燦輝,2000,「台灣中部山岳隧道之震害與修復」,地工技術,第81期,第85-96頁。
72 李錫堤、鄭錦桐、林柏伸,2002,「機率式危害度分析方法的新發展」,2002年岩盤工程研討會,新竹,第691-700頁。
73 徐力平、翁世樑,2000,「鐵路隧道震後修復之地質處理-以三義壹號隧道損害修復為案例」,隧道工程地質處理技術,第125-153頁。
74 陳正勳、黃燦輝,2006,「山岳隧道受震之破壞型態及機制初探」,第五屆海峽兩岸隧道與地下工程學術與技術研討會,台灣,第A22-1-A22-10頁。
75 黃俊鴻、杜東岳、鍾明劍、盧志杰、吳嘉賓,2004,「鐵路舊山線三義-后里間老舊隧道耐震能力分析與評估」,健峰顧問工程有限公司研究討畫成果報告,桃園。
76 黃燦輝、鄭富書,1999,「隧道工程技術及安全檢測規劃-老舊交通隧道之安全性檢測、維修與補強技術研訂(I)」,國立臺灣大學土木工程研究所,臺北。
77 臺灣總督府,1999,昭和十年臺灣震災誌,南天書局,臺北。
78 盧志杰、黃俊鴻,2008「潛盾隧道受震反應之有效應力分析」,結構工程,第23卷,第3期,第63-84頁。
79 盧志杰、黃俊鴻,2005,「液化土層中潛盾隧道受力行為之簡化分析模式」,結構工程,第20卷,第4期,第92-108頁。
80 盧志杰、黃俊鴻,2005,「岩盤隧道之擬靜態簡化受震分析模式」,第十一屆大地工程學術研究討論會論文集,萬里,台灣。
81 聯合大地工程顧問公司,1989,「鐵路山線竹南至豐原間改線與雙軌工程三義一號隧道改線段鑽探與試驗工程」,榮民工程事業管理處。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2009-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明