博碩士論文 92322033 詳細資訊


姓名 古秉弘(Ping-Hung Ku)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 砂土中音波傳遞與量測之研究
(Study of the sound wave transmission and measuring in sand layer)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 累積了前人的研究經驗發現,微音錐除了可藉由錐尖阻抗與均方根音壓,探測土層之基本性質外,音波對於砂土層中所發生的微小變動,也具有高敏感度的特性。本試驗利用音波的此項特性,對於砂土層滑動所産生之聲音進行量測。最終目標希望能夠建立一套,利用音波量測技術來監測土壤中變動行為之系統。
本試驗首先量測土壤在貫入過程中所産生的微震音放射,利用貫入試驗所得到的結果,瞭解土層之基本特性。並在室內大型土槽中進行音波的量測,模擬音波在現地砂土層中的傳遞,有助於瞭解音波在現地砂土層中傳播的特性。最後模擬擋土牆後砂土滑動,量測砂土在滑動時,所産生之音波訊號,並探討在不同條件下,砂土發生滑動時之行為與音波訊號之關係。
綜合以上試驗結果顯示,峴港砂之錐尖阻抗、均方根音壓與音射發生率,皆隨著試體相對密度及覆土壓力的增加而增加,而增加相對密度,更可有效提高錐尖阻抗與均方根音壓增加的速率。音波在砂土層中傳遞時,除了愈緊密的砂土層,音波強度衰減愈慢外,均方根音壓還會隨著感測器與音源距離成反比。貫入試驗所得到的音波訊號頻率主要分布在2 ~ 4.5kHz,而砂土滑動試驗所得到頻率分布在5Hz,表示峴港砂在受到微音錐擠壓後,砂土顆粒間因碰撞會産生較高頻之音波訊號,若峴港砂經解壓後發生滑動,砂土顆粒間因碰撞會産生較低頻之音波訊號。
摘要(英) According to the results of past researches about acoustic cone, it is understood that the acoustic cone can be used to measure cone resistance and root mean square of sound pressure. It is also found that the acoustic cone is sensitive in measuring small sound wave due to a small variation in ground. This research used the measuring technique of sound to record the sound waves in soil during slide. In the future, this technique may be expected to establish a monitoring system for recording small variation of soil behaviors.
This research measured the Acoustic Emission (AE) of soil during the penetration of cone tip in the testing chamber and realized some basic characteristics of soil. In addition, a sound wave propagation test was conducted in the test pit to realize the sound wave transmission in sand layer. Finally, a sand slide model test was performed to simulate the movement of retaining wall and the sound signals were recorded during the slide of sand.
From the results of experiments, it is found that the cone resistance, the root mean square of sound pressure and AE rate increased with the increase of relative density and overburden pressure. Increase the relative density of sand can increase the cone resistance and the root mean square of sound pressure effectively. The amplitude of sound wave will decrease gradually during the transmission in loose sand layer and the root mean square of sound pressure will decrease in inverse proportion with the increase of distance from sound source. From the results of ACPT, the major frequency of sound signals is located at the range of 2~4.5kHz, and for sand slide model test, it located at 5Hz. These experimental results show that the sound signal with high frequency will be generated due to the bump of sand particles during the penetration of cone tip. However, the sound signal with low frequency will be generated during the sand slide under the condition of unloading.
關鍵字(中) ★ 錐尖阻抗
★ 均方根音壓
★ 砂土層滑動
★ 音波傳遞
關鍵字(英) ★ root mean square of sound pressure
★ sand slide
★ cone resistance
★ sound wave propagation
論文目次 中文摘要 I
英文摘要 II
目錄 III
照片目錄 VII
表目錄 VIII
圖目錄 IX
符號說明 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 論文內容 2
第二章 文獻回顧 3
2.1 圓錐貫入試驗 3
2.1.1 概述 3
2.1.2 圓錐貫入試驗之影響因素 3
2.1.3 圓錐貫入試驗之工程應用 5
2.1.3.1 計算基樁之承載力 5
2.1.3.2 土壤分類與研判 6
2.1.3.3 液化潛能評估 9
2.2 室內模型槽試驗 12
2.2.1 模型槽試驗之發展與應用 12
2.2.2 模型試體邊界條件之控制 13
2.2.3 模型土槽邊界效應之評估 14
2.3 聲音量測技術在大地工程之應用 15
2.3.1 聲音之基本原理 15
2.3.2 音射現象 16
2.3.3 聲音傳播之特性 17
2.3.4 聲音訊號之物理量表示方法 18
2.3.5音波訊號之分析 20
2.3.5.1 時間域分析 20
2.3.5.2 頻率域分析 21
2.3.6 音波訊號之應用 21
2.3.6.1 音波於土壤力學上之應用 21
2.3.6.2 音波訊號於不穩定邊坡上之量測 22
2.3.6.3 微音錐貫入試驗 23
2.3.6.4 土石流地聲特性之研究 25
第三章 試驗土樣、儀器設備及試驗方法 44
3.1 試驗土樣 44
3.2 試驗儀器與相關設備 44
3.2.1 圓桶形土槽均勻砂土貫入試驗設備 44
3.2.2 現地砂土層中音波傳遞之量測設備 51
3.2.3 擋土牆後砂土滑動之音波量測設備 52
3.3 試驗方法與步驟 53
3.3.1 微音錐基本測試 53
3.3.2 最大與最小乾單位重試驗 54
3.3.3 圓桶形土槽均勻砂土貫入試驗方法 56
3.3.4 現地砂土層中音波傳遞之量測方法 57
3.3.5 擋土牆後砂土滑動之音波量測方法 58
3.4 音波訊號之處理 59
3.4.1 背景噪音之影響與校正 60
3.4.2 背景噪音之濾除 61
3.4.3 取樣定理 61
3.4.4 門檻值設定 62
3.4.5 快速傅立葉轉換 62
第四章 試驗結果與分析 86
4.1 圓桶形土槽均勻砂土貫入試驗 86
4.1.1 錐尖阻抗之探討 86
4.1.2 音波訊號之探討 88
4.1.2.1 背景噪音之濾除 88
4.1.2.2 均方根音壓之分析 90
4.1.2.3 音射發生率之分析 92
4.1.2.4 頻譜分析 94
4.2現地砂土層中音波傳遞之量測 94
4.2.1 均方根音壓之分析 95
4.3 擋土牆後砂土滑動之音波量測 97
4.3.1 背景噪音之濾除 97
4.3.2 音壓振幅之分析 98
4.3.3 均方根音壓之分析 99
4.3.4 音射數之分析 100
4.3.5 頻譜分析 101
第五章 結論與建議 126
5.1 結論 126
5.2 建議 127
參考文獻 128
參考文獻 1. 土質工學會,土質試驗法,日本土質工學會,第172-188頁(1976)。
2. 王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
3. 方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,第4-9頁(1998)。
4. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1984)。
5. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「中國土木水利工程學刊」,第十六卷,第一期,第53-63頁 (2004)。
6. 莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
7. 陳文泓,「利用生石灰樁處理飽和粘性土層之研究」,碩士論文,國立中央大學土木工程學系,中壢(1987)。
8. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
9. 趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
10. 蘇德勝,噪音原理及控制,臺隆書店,台北(2000)。
11. Anderson, W.F., and Pyrah, I.C., “Presssuremeter testing in a clay calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 55-66 (1991).
12. Andrus, R.D., and Stokoe, K.H., “Liquefaction resistance of soils based on shear wave velocity,” Journal Geotechnical Engineering, Vol. 126, No. 11, pp. 1015-1026 (1997).
13. ASTM D3441-86, “Standard Test Method for Deep Quasi-Static Cone and Friction-Cone Penetration Test of Soil,” Annual book of ASTM Standards, Vol. 4, No. 8 (1986).
14. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
15. Begemann, H.K., “The Friction Jacket Cone as an Aid in Determining the Soil Profile,” Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 17-20 (1965).
16. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring of Slope Instability : Development of an Active Waveguide System,” Proceedings of the Institution of Civil Engineers : Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
17. Douglas, B.J., and Olsen, R.S., “Soil classification using electric cone penetrameter,” Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, OCT., St. Louis, pp. 209-227 (1981).
18. Ghionna, V.N., and Jamiolkowski, M., “A critical appraisal of calibration chamber testing of sands,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp. 13-40 (1991).
19. Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
20. Hardy, H.R. Jr., “Application of acoustic emission techniques to rock and rock structures: a state of the art review,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP750, American Society for Testing and Materials, pp. 4-92 (1981).
21. Holden, J.C., “Laboratory research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
22. Holden, J.C., “History of the first six CRB calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 1-12 (1991).
23. Houlsby, G.T., and Hitchman, R., “Calibration chamber tests of a cone penetrometer in sand,” Geotechnique, Vol. 38, No. 1, pp. 39-44 (1988).
24. Juang, C.H., and Jiang, T., “Assessing probabilistic methods for liquefaction potential evaluation,” Soil Dynamics and Liquefaction, ASCE, pp. 148-162 (2000).
25. Juang, C.H., Chen, C.J., and Jiang, T., “Probabilistic framework for liquefaction potential by shear wave velocity,” Journal of Geotechnical Engineering, ASCE, Vol. 127, No. 8, pp. 670-678 (2001).
26. Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp. 93-141 (1981).
27. Liao, T., Mayne, P.W., Tuttle, M.P., Schweig, E.S., and Van Arsdale, R. B., “CPT site characterization for seismic harzards in the new madrid seismic zone,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 943-950 (2002).
28. Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for Engineers,” McGraw-Hill Inc (1980).
29. Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore (1986).
30. Meigh, A.C., “Cone penetration testing: methods and interpretation,” CIRIA ground engineering report : in-situ testing, Butterworths, London (1987).
31. Melzer, K.J., “Sondenunterschungen in sand,” D. Dissertation, Technichen Hochschule Aachen (1968).
32. Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112 (1974).
33. Olsen, R.S., and Mitchell, J.K., “CPT stress normalization and predication of soil classification,” Proceedings of the International Symposium on Cone Penetration Testing-CPT´95, Linkoping, Sweden, October (1995).
34. Parkin, A.K., and Lunne, L., “Boundary Effects in the Laboratory Calibration of a Cone Penetrometer for Sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-II, pp. 761-768 (1982).
35. Parkin, A.K., “The calibration of cone penetration,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, Orlando, Florida, pp. 221-243 (1988).
36. Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594 (1986).
37. Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical journal, No. 27, pp. 151-158 (1990).
38. Robertson, P.K., and Wride, C.E., “Evaluating cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459 (1998).
39. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
40. Salgado, R., Mitchell, J.K., and Jamiolkowski, M., “Cavity expansion and penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 4, pp. 344-354 (1998).
41. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
42. Schmertmann, J.H., “Guidelines for cone penetration test, performance and design,” Federal Highway Administration, Report FHWA-TS-78- 209 (1978).
43. Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal Soil Mechanics Foundations Division, Vol. 97 No. 9, pp. 1249-1273 (1971).
44. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
45. Tcheng, Y., “Foundations profonds en milieu pulverulent a diverses compacities,” Annales de I'Institut Technique du Batiment et des Travaux Publics, Sols et Fondations 54, pp. 219-220 (1966).
46. Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
47. Veismanis, A.S., “Laboratory investigation of electrical friction-cone penetrometers in sand,” Proceedings of European Symposium on Penetration Testing, ESOPT-I, Stockholm, Vol. 2.2 (1974).
48. Villet, W.C.B., “Acoustic emission during the static penetration of soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
49. Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture, Geotechnique, Vol. 34, pp. 449-489 (1984).
指導教授 張惠文(Huei-When Chang) 審核日期 2006-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡