博碩士論文 92323019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:34.229.119.29
姓名 楊明倫(Ming-Lun Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 旋轉雷立夫樑受週期性側向與軸向力之動態響應分析
(Dynamic response analysis of a rotating Rayleigh beam with periodically radial and axial forces)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文欲模擬車床加工中,均勻圓柱之工件的動態響應。預想之加工情況,為等速循環之連續切削,刀具作用於工件上之力可視作一移動之外力,除了對工件產生週期之側向力之外,對工件之軸向也會造成張力與壓力作用。文中將等速移動之側向力與軸向力表示為週期性之函數,利用傅立葉展開法,分析車削多個週期後,工件之動態響應。
  理論上,工件可視為一旋轉之雷立夫樑,受到週期性運動相依之側向力,與週期性之軸向力。本文使用漢米爾頓定理,推導出此系統之運動方程式,並無因次化,代入以傅立葉展開之外力函數,再以格勒金法離散化系統運動方程式。接著,針對各個模態,以多重尺度法與數值方法做穩定性分析,以討論在各種條件下,系統之穩定特性。之後,以阮奇庫塔法,求解系統之微分方程組,得到位移響應,並經由快速傅立葉轉換得到頻譜圖,分析位移響應之頻譜特性。最後,再顯示穩定狀態下,旋轉樑隨時間之變形。
摘要(英) This paper formulates the processing of the lathe. In this process, a turning tool moves along the workpiece repeatedly. It could be seem as a periodically moving load which includes radial motion-dependent force and axial tension and compression distributed forces. To analyze the dynamic response of the workpiece after numerous turning cycles, those external forces are periodic functions in the forms of Fourier series.
A rotating Rayleigh beam with periodically radial and axial forces was considered. The governing equations were derived by Hamilton’’s principle and expressed in a dimensionless form. The equation of motions was turned into discrete equations by Galerkin’’s method. For each mode, the stability of the rotating beam was analyzed by the method of multiple scales and Floquet theory. The differential equations were also solved by Runge-Kutta method. The phenomena of stability analysis and spectrum analysis are discussed. Finally, the time responses of the beam are showed and discussed.
關鍵字(中) ★ 動態響應
★ 穩定性分析
★ 多重尺度法
★ 旋轉雷立夫樑
關鍵字(英) ★ rotating Rayleigh beam
★ dynamic response
★ stability analysis
★ the method of multiple scales
論文目次 目錄………………………………………………I
圖索引……………………………………………III
表索引……………………………………………VII
第一章 前言………………………………………1
第二章 系統運動方程式…………………………4
2.1. 方程式推導…………………………………4
2.2. 無因次化系統方程式………………………6
2.3. 模擬外力形式………………………………7
2.3.1. 運動相依移動側向力……………………8
2.3.2. 軸向力……………………………………11
2.4. 離散化系統方程式…………………………13
第三章 穩定性理論………………………………18
3.1. 多重尺度法…………………………………18
3.1.1. 軸向力的穩定性分析……………………19
3.1.2. 運動相依移動側向力的穩定性分析……32
3.1.3. 二次項穩定性分析………………………39
3.1.4. 模態耦合…………………………………41
3.2. 數值方法……………………………………48
第四章 系統之數值結果與討論…………………51
4.1. 穩定性分析…………………………………51
4.1.1. 軸向力之影響……………………………52
4.1.2. 運動相依側向力之影響…………………56
4.2. 樑上單點位移………………………………59
4.3. 樑變形………………………………………65
第五章 結論與建議………………………………66
5.1. 結論…………………………………………66
5.2. 建議…………………………………………67
參考文獻……………………………………………69
參考文獻 Argento, A. and Scott, R. A., 1992, “Dynamic response of a rotating beam subjected to an accelerating distributed surface force”, Journal of Sound and Vibration, Vol. 157, pp. 221-231
Argento, A., 1995, “A spinning beam subjected to a moving deflection dependent load, Part I : response and resonance”, Journal of Sound and Vibration, Vol. 182, pp. 595-615
Argento, A. and Morano, H. L., 1995, “A spinning beam subjected to a moving deflection dependent load, Part II : parametric resonance”, Journal of Sound and Vibration, Vol. 182, pp. 617-622
Bauer, H. F., 1980, “Vibration of a rotating uniform beam, Part I : orientation in the axis of rotation”, Journal of Sound and Vibration, Vol. 72, pp. 177-189
Burden, R. L. and Faires, J. D., 2001, Numerical Analysis, Brooks/cole
Cheng, C. C. and Lin, J. K., 2003, “Modelling a rotating shaft subjected to a high-speed moving force”, Journal of Sound and Vibration, Vol. 261, pp. 955-965
Dym, C. L. and Shames, I. H., 1973, Solid Mechanics A Variational Approach, McGraw-Hill
Huang, Y. M. and Chang, K. K., 1997, “Stability analysis of a rotating beam under a moving motion-dependent force”, Journal of Sound and Vibration, Vol. 202, pp. 427-437
Huang, Y. M. and Lee, C. Y. , 1998, “Dynamics of a rotating Rayleigh beam subject to a repetitively travelling force”, International Journal of Mechanical Sciences, Vol. 40, pp. 779-792
Katz, R., Lee, C. W., Ulsoy, A. G., and Scott, R. A., 1987, “Dynamic stability and response of a beam subject to a deflection dependent moving load”, Transactions of the ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 361-365
Katz, R., Lee, C. W., Ulsoy, A. G., and Scott, R. A., 1988, “The dynamic response of a rotating shaft subject to a moving load”, Journal of Sound and Vibration, Vol. 122, pp. 131-148
Kim, S. M., 2005, “Stability and dynamic response of Rayleigh beam-columns on an elastic foundation under moving loads of constant amplitude and harmonic variation”, Engineering Structures, Vol. 27, pp. 869-880
Lee, C. W., Katz, R., Ulsoy, A. G., and Scott, R. A., 1988, “Modal analysis of distributed parameter rotating shaft”, Journal of Sound and Vibration, Vol. 122, pp. 119-130
Lee, H. P., 1995, “Dynamic response of a rotating Timoshenko shaft subject to axial forces and moving loads”, Journal of Sound and Vibration, Vol. 181, pp. 169-177
Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw-Hill
Nayfeh, A. H. and Mook, D. T., 1979, Nonlinear Oscillations, New York Wiley
Rao, S. S., 1986, Mechanical Vibrations, Addison-Wesley
Timoshenko, S. P., 1922, “On the forced vibration on bridges”, Philosophical Magazine, Vol. 43, pp. 1018
指導教授 黃以玫(Yii-Mei Huang) 審核日期 2005-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明