博碩士論文 92323021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.94.202.172
姓名 翁義清(Yi-Ching Wong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 大白鼠坐骨神經之生物力學性質分析
(Biomechanical Properties of Rat Sciatic Nerve)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討大白鼠坐骨神經之拉伸、應力鬆弛等生物力學機械性質,實驗所使用的老鼠品種分別是Sprague-Dawley和Wistar,拉伸實驗之應變速率為0.02與0.2 s-1。實驗結果顯示,在應變速率為0.02 s-1之條件下,拉伸強度、彈性模數和破損應變分別為3.66 ? 1.20 MPa、6.58 ? 3.22 MPa與0.91 ? 0.18,在較高應變速率0.2 s-1之條件下,三項相對應之機械性質分別為4.72 ? 1.21 MPa、12.56 ? 4.11 MPa與 0.77 ? 0.27,此結果顯示較高的應變速率會造成較大的彈性模數,但拉伸強度與破損應變經由統計學檢定後在兩個不同應變速率下並無顯著差異,表示不受應變速率影響。此外,利用光學顯微鏡觀察坐骨神經拉伸試片的橫截面,可以發現神經束膜與神經外膜是決定坐骨神經強度的主要軟組織。
在應力鬆弛方面,主要探討起始應變速率對應力鬆弛現象的影響,實驗結果顯示較慢的起始應變速率在33%的固定應變之下,會造成較大的應力鬆弛程度,但是對50%的固定應變而言,所呈現的現象卻是相反的,而在66%的固定應變條件下,並沒有發現起始應變速率會造成明顯不同的應力鬆弛現象。另一方面,比較不同固定應變在相同起始應變速率下的差異,可以發現在較低的起始應變速率(0.02 s-1)之下,33%固定應變的鬆弛程度會比50%與66%固定應變還要大,但在較高的起始應變速率(0.2 s-1)之下,鬆弛程度在三個不同固定應變量之下並沒有發現顯著的差別。此外,本研究使用一黏彈性數學模型(Kelvin Model)來分析應力鬆弛現象,分析結果顯示Kelvin Model關係式對大白鼠坐骨神經之應力鬆弛現象有相當不錯的描述結果。
摘要(英) The present study was conducted to investigate the in vitro tensile properties and stress relaxation behavior of sciatic nerves of Sprague-Dawley (SD) and Wistar rats under two different initial strain rates, 0.02 and 0.2 s-1. Results showed that for a strain rate of 0.02 s-1 the ultimate stress, elastic modulus and failure strain are 3.66 ? 1.20 MPa, 6.58 ? 3.22 MPa and 0.91 ? 0.18, respectively. The corresponding values for 0.2 s-1 are 4.72 ? 1.21 MPa, 12.56 ? 4.11 MPa and 0.77 ? 0.27, respectively. Such results indicate that a higher strain rate would result in a greater elastic modulus but ultimate stress and failure strain level would not be affected by strain rate according to statistical analysis. In addition, microstructural analysis showed that perineurium and epineurium were responsible for the tensile strength of rat sciatic nerve.
With regard to the effects of initial strain rate on the stress relaxation behavior, a slower initial stain rate would cause a greater extent of stress relaxation at a constant strain of 33%, but an opposite trend was found for a constant strain of 50%. However, no statistically significant effect of initial strain rate could be found on the stress relaxation behavior of rat sciatic nerve at a constant strain of 66%. It was also found that the extent of stress relaxation under a constant strain of 33% was greater than those under 50% and 66% at a low initial strain rate of 0.02 s-1. Nevertheless, the extents of stress relaxation at a high initial strain rate of 0.2 s-1 were comparable among the given three constant strain levels. Finally, the stress relaxation results at all given testing conditions could be well correlated by a viscoelastic model (the Kelvin model).
關鍵字(中) ★ 應力鬆弛
★ 老鼠
★ 生物機械性質
★ 坐骨神經
關鍵字(英) ★ biomechanical properties
★ sciatic nerve
★ stress relaxation
★ rat
論文目次 TABLE OF CONTENTS
Page
LIST OF TABLES IV
LIST OF FIGURES V
1 INTRODUCTION 1
1.1 Peripheral Nerve System 1
1.2 Biomechanical Properties of Peripheral Nerves 2
1.2.1 Tensile Properties of Peripheral Nerves 2
1.2.2 Viscoelastic Properties of Peripheral Nerves 5
1.3 Medical Biostatics 7
1.4 Purpose and Scope 8
2 EXPERIMENTAL PROCEDURES 9
2.1 Sample Preparation 9
2.2 Tensile Test 9
2.3 Stress Relaxation Test 10
2.4 Microstructural Analysis 11
2.5 Statistical Analysis 11
3 RESULTS AND DISCUSSION 14
3.1 Tensile Properties 14
3.2 Stress Relaxation Behavior 16
3.3 Viscoelastic Models 20
4. CONCLUSIONS 23
REFERENCES 24
TABLES 26
FIGURES 30
參考文獻 1. T. Ushiki and C. Ide, “Three-Dimensional Organization of the Collagen Fibrils in the Rat Sciatic Nerve as Revealed by Transmission- and Scanning Electron Microscopy,” Cell and Tissue Research, Vol. 260, 1990, pp. 175-184.
2. M. K. Kwan, E. J. Wall, J. Massie, and S. R. Garfin, “Strain, Stress and Stretch of Peripheral Nerve-Rabbit Experiments in Vitro and in Vivo,” Acta Orthopaedica Scandinavica, Vol. 63, 1992, pp. 267-272.
3. R. Grewal, J. Xu, D. G. Sotereanos, and S. L.-Y. Woo, “Biomechanical Properties of Peripheral Nerves,” Carpal and Cubital Tunnel Surgery, Vol. 12, 1996, pp. 195-204.
4. H. J. Gamble and R. A. Eames, “An Electron Microscope Study of the Connective Tissues of Human Peripheral Nerve,” Journal of Anatomy, Vol. 98, 1964, pp. 655-663.
5. C. T. Liu, C. E. Benda, and F. H. Lewey, “Tensile Strength of Human Nerves,” Arch Neurol Psychiatry, Vol. 59, 1948, p.322.
6. D. Denny-Brown and C. Brenner, “Paralysis of Nerve Induced by Direct Pressure and by Tourniguet,” Arch Neurol Psychiatry, Vol. 51, 1944, p. 1.
7. F. W. Bora, Jr., S. Richardson, and J. Black, “The Biomechanical Response to Tension in a Peripheral Nerve,” The Journal of Hand Surgery, Vol. 5, 1980, pp. 21-25.
8. J. Haftek, “Stretch Injury of Peripheral Nerve,” The Journal of Bone and Joint Surgery, Vol. 52, 1970, pp. 354-365.
9. B. L. Rydevic, M. K. Kwan, R. R. Myers, R. A. Brown, K. J. Triggs, S. L.-Y. Woo, and S. R. Garfin, “An in Vitro Mechanical and Histological Study of Acute Stretching on Rabbit Tibial Nerve,” Journal of Orthopaedic Research, Vol. 8, 1990, pp. 694-701.
10. A. Beel, E. Groswald, and W. Luttges “Alterations in The Mechanical Properties of Peripheral Nerve Following Crush Injury,” Journal of Biomechanics, Vol. 17, 1984, pp. 185-193.
11. L. Ren, J. Xie, S. Ma, X. Liu, S. Huang, and W. Tan, “Biomechanical Properties of Peripheral Nerve in Rat,” Chinese Journal of Biomedical Engineering, Vol. 13, 1994, pp. 273-278.
12. S. Sunderland and K. C. Bradley, “Stress-Strain Phenomena in Human Peripheral Nerve Trunks,” Brain, Vol. 84, 1961, p. 102.
13. P. Tillaux, “Des Affections Chirurgicales Des Nerfs,” Thesis, Paris, P Asselin, 1866, p. 11.
14. N. Ozkaya and M. Nordin, “Viscoelasticity and Biological Tissues,” p.334 in Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation, Van Nostrand Reinhold, New York, USA, 1991.
15. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd Ed., Springer-Verlag, Inc., New York, 1993, p. 41.
16. E. J. Wall, M. K. Kwan, B. L. Rydevik, S. L.-Y. Woo, and S. R. Garfin, “Stress Relaxation of a Peripheral Nerve,” The Journal of Hand Surgery, Vol. 16A, 1991, pp. 859-863.
17. J. P. Kendall, I. A. F. Stokes, J. P. O’Hara, and R. A. Dickson, “Tension and Creep Phenomena in Peripheral Nerve,” Acta Orthop Scand, Vol. 50, 1979, pp. 721-725.
18. E. J. Wall, J. B. Massie, M. K. Kwan, B. L. Rydevik, R. R. Myers, and S. R. Garfin, “Experimental Stretch Neuropathy: Change in Nerve Condition under Tension,” Journal of Bone and Joint Surgery (Br), Vol. 74, 1992, pp. 126-129.
19. S. Selvin, Biostatics: How It Works, Pearson Education, Inc., New Jersey, 2004, pp. 207-225.
20. V. R. Hentz, J. M. Rosen, S. J. Xiao, K. C. McGill, and G.. Abraham, “The Nerve Gap Dilemma: A Comparison of Nerves Repaired End to End under Tension with Nerve Graft in A Primate Model,” The Journal of Hand Surgery, Vol. 18A, 1993, pp. 417-425.
21. E. W. Minium and R. B. Clarke, Elements of Statistical Reasoning, John Wiley & Sons, Inc., Toronto, Canada, 1982, pp. 305-320.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2005-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明