博碩士論文 92323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:100.25.43.188
姓名 涂書豪(Shu-hao Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 碳鋼與鋁-矽-鎂合金反應之機制探討
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以1040與1020作為模具模擬材料,鋁湯部份分別採用純鋁、鋁鎂合金、鋁矽合金及A356,分別探討表面粗糙度帶入氧化膜、碳鋼中含碳量以及碳鋼表面噴覆滑石粉對鐵-鋁化合物生長的影響;接著再探討鋁湯中含有鎂、矽元素對於鐵-鋁化合物生長的影響。
實驗結果顯示:
(1)碳鋼表面粗糙度帶入的空氣與氧化膜會形成隔絕層,隨著時間增加,由於氧化鋁膜與鋁湯的熱膨脹係數差異,導致氧化鋁膜碎裂,使得鋁湯直接接觸碳鋼表面。
(2)鋁原子沿著肥粒鐵晶界擴散進入肥粒鐵中,然而在鐵-鋁化合物生長過程中,沃斯田鐵含有的碳會擴散,並且堆積在氧化膜上,或者是在堆積的過程中被正在生長的鐵-鋁化合物包覆起來形成碳通道。
(3)鋁湯中所含的矽會與氧化鋁膜反應並分解氧化鋁膜,使得在初期碳鋼較快接觸到鋁湯,但隨時間增加,矽原子擴散至碳鋼基地與鐵-鋁化合物介面之間形成碳化矽,使得鐵-鋁化合物生長受到障礙,因此長時間的生長趨勢減緩。
(4)湯中所含的鎂極易與氧化鋁反應形成尖晶石(spinel),使得在鐵-鋁化
合物與鋁湯的介面之間受到阻礙。
(5)碳鋼表面噴覆滑石粉,能夠有效的阻擋鋁湯直接接觸碳鋼表面。
(6)在A356合金中,在初期容易產生多元氧化物,降低了熱裂的可能性,使得在初期所產生鐵-鋁化合物厚度相當小;之後在碳鋼基地與鐵-鋁化合物介面之間則是鋁湯以及碳鋼中所含矽原子扮演阻礙的角色。
摘要(英) This study used 1040 and 1020 carbon steels to simulate the materials of molds, and the aluminum melt adopted pure aluminum, Al-Mg alloy, Al-Si alloy and A356 separately. The growing of the Fe-Al compound was influenced respectively by the surface roughness formed oxide film, the carbon content of the carbon steel and sprayed talcum powder on the surface of the carbon steel and then investigated the influence of the magnesium and silicon contained in the aluminum melt.
Experimental results show:
1. It would form the barrier layer that was caused by the surface roughness of the carbon steel. With time increased, because the difference of the thermal expansion factor among aluminum oxide film and aluminum melt led to the crack of the aluminum oxide film, and the aluminum melt contacted the surface of the carbon steel directly.
2. Aluminum atoms diffused into ferrite along the ferrite grain boundary. During the growing of the Fe-Al compound, the carbon contained in the austenite that diffused, and stacked in the oxide or wrapped by the growing Fe-Al compound then formed the carbon channel.
3. The silicon contained in the aluminum melt reacted with the aluminum oxide film and dissolved it. In the initial stage, it made the carbon steel to contact the aluminum melt faster. But with the time increased, the silicon atoms diffused into between the carbon steel substrate and the Fe-Al compound then formed silicon carbide. It obstructed the growing of the Fe-Al compound and retarded the trend of growing time in long period.
4. The magnesium contained in the aluminum melt was apt to react with the aluminum oxide and formed spinel. It hindered between the Fe-Al compound and the aluminum melt.
5. Coating the talcum powder on the surface of the carbon steel can prevent the aluminum melt to contact the surface of the carbon steel effectively.
6. In the A356 alloy, it was apt to form the diverse oxide in the initial stage and decrease the probability of the thermal cracking. It made the thickness of the Fe-Al compound very thin in the initial stage. The aluminum melt and the silicon contained in the carbon steel retarded between the interface of the carbon steel substrate and the Fe-Al compound.
關鍵字(中) ★ A356.2合金
★ 滑石粉
★ 鋁鎂合金
★ 鋁矽合金
★ 碳通道
★ 氧化膜
關鍵字(英) ★ talcum powder
★ Al-Mg alloy
★ oxide film
★ carbon channel
★ Al-Si alloy
論文目次 摘要----------------------------------------------------------------I
Abstract-----------------------------------------------------------ii
總目錄-------------------------------------------------------------iv
表目錄------------------------------------------------------------vii
圖目錄-----------------------------------------------------------viii
第一章 前言---------------------------------------------------------1
第二章 文獻回顧-----------------------------------------------------2
2-1 碳鋼及合金鋼材料介紹------------------------------------------2
2-1-1 碳鋼簡介--------------------------------------------------2
2-1-2工具鋼簡介------------------------------------------------2
2-2 鋁合金材料特性介紹--------------------------------------------3
2-2-1 純鋁------------------------------------------------------3
2-2-2 鋁-矽合金------------------------------------------------4
2-2-3 A356(鋁-矽-鎂)鋁合金材料介紹---------------------------4
2-2-4 矽元素對鋁合金的影響--------------------------------------5
2-2-5 鎂元素對鋁合金的影響--------------------------------------5
2-3 碳鋼與純鋁反應形成介金屬化合物--------------------------------5
2-3-1 鐵-鋁化合物的形成----------------------------------------6
2-3-2 外層純鋁厚度與溫度及時間關係------------------------------7
2-3-3 介金屬層與溫度及時間的關係--------------------------------8
2-4 碳鋼與鋁-矽合金反應產生介金屬化合物--------------------------8
2-4-1 鋁湯中含矽對介金屬化合物層影響----------------------------9
2-4-2 碳鋼與鋁矽合金的黏著機制----------------------------------9
2-5 塗層介紹-----------------------------------------------------11
第三章 實驗方法與步驟----------------------------------------------13
3-1 實驗材料-----------------------------------------------------13
3-2 試棒規格-----------------------------------------------------13
3-3 實驗設備-----------------------------------------------------13
3-4 實驗步驟-----------------------------------------------------14
3-5 實驗參數-----------------------------------------------------15
第四章 結果與討論---------------------------------------------------17
4-1 碳鋼與純鋁在不同參數下實驗結果-------------------------------17
4-1-1 氧化膜的影響---------------------------------------------17
4-1-2 碳鋼浸入純鋁短時間---------------------------------------18
4-1-3 碳鋼浸入純鋁長時間---------------------------------------18
4-1-4 碳量多寡的影響-------------------------------------------19
4-1-5 碳的擴散-------------------------------------------------20
4-1-6 鐵-鋁化合物生長-----------------------------------------21
4-2 鋁-矽合金對鐵-鋁化合物的影響-------------------------------22
4-2-1 鐵元素對表面氧化膜的影響---------------------------------22
4-2-2 矽元素對氧化鋁膜的影響-----------------------------------23
4-2-3 碳鋼浸入鋁-矽短時間-------------------------------------24
4-2-4 矽元素對鐵-鋁化合物生長的影響---------------------------24
4-3 鋁-鎂合金對鐵-鋁化合物的影響-------------------------------25
4-3-1 鎂元素對氧化鋁膜的影響-----------------------------------25
4-3-2 碳鋼浸入鋁-鎂短時間-------------------------------------26
4-3-3鎂元素在鐵-鋁化合物生長的影響---------------------------27
4-4 表面塗層對鐵-鋁化合物生長的影響-----------------------------27
4-5 鋁-矽-鎂合金對鐵-鋁化合物生長的影響-----------------------28
第五章 結論---------------------------------------------------------30
參考文獻-----------------------------------------------------------31
附錄 FeAl2,FeAl3及Fe2Al5之晶格結構圖--------------------------------95
表目錄
Chap. 2
Table 2-1 熱加工合金工具鋼化學成分---------------------------------34
Table 2-2 The thermal and electric properties of aluminum------------34
Table 2-3 Crystal structure and stability rang of the phases formed
in Fe-Al binary system at room temperature----------------35
Table 2-4 Thermodynamic constants for the intermetallic phases form
In Fe-Al binary system-----------------------------------35
Table 2-5 Vickers microhardness values across interface layer------36
Table 2-6 Experimental conditions uses in the soldering study------36
Table 2-7 X-Ray diffraction pattern of powder sample of
intermetallic layer formed in the diffusion couple-------37
Chap. 3
Table 3-1 鋁熔湯成分表---------------------------------------------38
Table 3-2 碳鋼成分表-----------------------------------------------38
Chap. 4
Table 4-1 各種參數下鐵-鋁化合物厚度-------------------------------39
圖目錄
Chap. 2
Fig. 2-1 The Fe-Fe3C metastable phase diagram-----------------------40
Fig.2-2 Part of the Al-Si phase diagram showing
composition range of various alloy types-------------------41
Fig.2-3 Fe-Al equilibrium phase diagram----------------------------41
Fig.2-4 Schematic representation of the phases with their
Characteristics--------------------------------------------42
Fig.2-5 Schematic diagram to illustrate the growth and
dissolution of an intermetallic compound AB at the solid-liquid
interface--------------------------------------------------42
Fig.2-6 Optical micrographs of the interface layer to show
the formation of intermetallic phases at 800℃
(etchant:3% natal)----------------------------------------43
Fig.2-7 BSE micrographs of the interface layer to show the
formation of both FeAl3 and Fe2Al5 intermetallic phases-------44
Fig.2-8 XRD spectra of phases formed within iron coupons
dipped into molten aluminum【7】--------------------------------45
Fig.2-9 EPMA analysis(Al and Fe)of the line AB shown in
Fig. 2-5 (b)【7】---------------------------------------------45
Fig.2-10 Effect of dipping temperature and time on the
thickness of pure aluminum layer---------------------------46
Fig.2-11 Variation of the layer average thickness
with t1/2 at T=800℃(a) Fe2Al5; (b) FeAl3---------------------46
Fig 2-12 Model of three elementary cells of Fe2Al5 placed next
to one another---------------------------------------------47
Fig 2-13 Intermetallic layer growth in pure and silicon
containing aluminum melts----------------------------------47
Fig 2-14 A schematic of the mechanism of die soldering-------------48
Fig 2-15 Cross-section of the pits, intermetallic phase layer,
and soldered aluminum---------------------------------------48
Chap. 3
Fig.3-1 表面粗操度量測結果(a)80號砂紙研磨;(b)1000號砂紙研磨-------49
Fig.3-2 鋼棒浸入實驗示意圖:(a)鐵試棒;(b)電氣爐;
(c)陶瓷坩堝;(d)鋁熔湯------------------------------------50
Fig.3-3實驗步驟流程圗---------------------------------------------51
Chap. 4
Fig 4-1 各種參數下鐵-鋁化合物厚度曲線圖---------------------------52
Fig.4-2 粗糙度不同之光學金相圖(a)1040 Ra:0.74 10min;
(b) 1040 Ra:0.06 10min;(c) 1040 Ra:0.74 20min;
(d) 1040 Ra:0.06 20min;(e) 1040 Ra:0.74 40min;
(f) 1040 Ra:0.06 40min;(g) 1040 Ra:0.74 60min;
(h) 1040 Ra:0.06 60min -------------------------------------53
Fig.4-3 Submerging of a piece of oxide------------------------------55
Fig.4-4 1040浸入純鋁反應3分鐘之SEM及EDS成份分析-----------------56
Fig.4-5 1040浸入純鋁反應3分鐘之SEM及EDS成份分析-----------------57
Fig.4-6 含碳量不同在鋁湯40分鐘之光學金相圖(a)1020;(b)1040------58
Fig.4-7 含碳量不同形成鐵-鋁化合物示意圖(a含碳量低變態後;
(b)含碳量高變態後;(c)含碳量低形成化合物
;(d)含碳量高形成化合物---------------------------------------59
Fig.4-8 化合物與基地介面為肥粒鐵(1040 PA 20min)---------------------60
Fig.4-9 碳通道(1040 PA 20min)---------------------------------------60
Fig.4-10 1040與純鋁反應20分鐘EPMA-mapping(a)SEM 600X
(b)SEM 1000X;(c)EPMA- Al mapping;(d)Fe mapping;
(e)O mapping ----------------------------------------------61
Fig.4-11 碳通道分散(1040 PA 10hr)----------------------------------63
Fig.4-12 EDS成分分析(a)SEM 100X;(b)分散碳通道之SEM 700X
(c)成分分析;(d) 完整區域之SEM 100X;(e)成分分析------------64
Fig.4-13 鐵-鋁化合物往晶界生長(a)SEM觀察500X
;(b)SEM觀察3500X --------------------------------------66
Fig.4-14鐵-鋁化合物與鐵基地介面(a)光學金相圖;
(b)EPMA Line Scanning 分析--------------------------------67
Fig.4-15鐵-鋁化合物EDS成分分析(a)SEM 200X;(b)SEM 10kX
(c) 鐵-鋁化合物底部;(d) SEM 10kX;(e) 鐵-鋁化合物側面-------68
Fig.4-16 1040與Al-Mg反應20分鐘之SEM觀察(a)600X;(b)2500X ----------70
Fig.4-17 鐵-鋁化合物生長試意圖------------------------------------71
Fig.4-18 SEM image of an iron-rich particle nucleated in
the underside of a thin alumina film imaged by
(a) secondary electrons and (b)back-scattered electrons----72
Fig.4-19 Schematic illustrations of reaction of oxide film in
experiment ;BM/oxide film in contact with Al-Xsi/oxide film,
(a) before heating; during heating,(b) the upper side of
cube is solid,(c) the upper side of cube is melted,
(d) the lower side of cube is melted----------------------73
Fig.4-20 1040浸入Al-7Si反應3分鐘之SEM及EDS成份分析-------------74
Fig.4-21 1040浸入Al-7Si反應3分鐘之SEM及EDS成份分析-------------75
Fig.4-22 1040與Al-7Si反應20分鐘後淬水之光學金相圖----------------76
Fig.4-23 鐵-鋁化合物及鐵基地介面間之 BSE--------------------------76
Fig.4-24 1040與Al-7Si反應20分鐘EDS 成分分析(a)SEM 10kX;
(b) A點成分分析;(c) B點成分分析;(d) C點成分分析;
(e) D點成分分析-------------------------------------------77
Fig.4-25 碳化矽之晶格立體圗----------------------------------------80
Fig.4-26 1040浸入Al-Mg反應3分鐘之SEM及EDS成份分析--------------81
Fig.4-27 1040浸入Al-Mg反應3分鐘之SEM及EDS成份分析--------------82
Fig.4-28 1040浸入Al-Mg反應3分鐘之SEM及EDS成份分析--------------83
Fig.4-29 FeAl2之立體晶格結構圖--------------------------------------84
Fig.4-30 1040與Al-Mg反應20分鐘之光學金相圖------------------------84
Fig.4-31 1040與鋁鎂反應20分鐘之SEM觀察(a)600X;(b)4500X -----------85
Fig.4-32 1040與鋁-鎂反應20分鐘之SEM觀察及EDS成分分析
(a)1000X;(b)4000X;(c)A點;(d)B點;(e)C--------------86
Fig.4-33 1040與鋁-鎂反應20分鐘之EDS成分分析(c)A點;
(d)B點;(e)C點-----------------------------------------87
Fig.4-34 1040與Al-Mg反應20分鐘 (a) SEM 600X;(b)SEM 4000X;
(c) Al mapping ;(d) Mg mapping ;(e) O mapping ------------88
Fig.4-35 1040 與純鋁反應20min之光學金相圖(a)表面coating滑石粉
(b)未coating---------------------------------------------90
Fig.4-36 滑石粉顆粒型態--------------------------------------------91
Fig.4-37 Reaction and decomposition of thermal-formed--------------91
Fig.4-38 1040與A356反應40分鐘之光學金相圖------------------------92
Fig.4-39 1040與A356反應40分鐘之SEM觀察及EDS分析(a)SEM 5000X;
(b)A點成分分析;(c)SEM 5000X;(d) B點成分分析-----------93
Fig.4-36 1040浸入Al-1Mg反應3分鐘之SEM及EDS成份分析-------------91
Fig.4-37 1040浸入Al-1Mg反應3分鐘之SEM及EDS成份分析-------------92
Fig.4-38 1040浸入Al-1Mg反應3分鐘之SEM及EDS成份分析-------------93
Fig.4-39 FeAl2立體晶格結構圖----------------------------------------94
參考文獻 1. Reed-Hill, Robert E, Physical metallurgy principle, PWS publishing company,
Boston, 1994, p5,590
2. 呂璞石,黃振賢,金屬材料,文京圖書有限公司,民國76年,p206,242,253-254
3. 賴耿陽,非鐵金屬材料,復漢出版社,台南,民國87年,p121-173
4. Lennart Backerud, Guocai Chai, Jarmo Tamminen, “Solidification Characteristics of Aluminum Alloys”, AFS/SKANALUMINUM, 2 (1990) 71-79
5. C. R. Loper,” Fluidity of Aluminum-Silicon Casting Alloys”, AFS Transactions,
100 (1992) 533-538
6. G. Lesile Armstrong, Robert D. Luckett,” Aluminum Die Casting Alloys”, Die casting engineer, 28 (1984) 10-16
7. H.R Shahverdi, M.R Ghomashchi, S. Shabestari, J. Hejazi, “ Microstructural analysis of interfacial reaction between molten aluminium and solid iron”, Journal of Materials Processing Technology, 124 ( 2002) 345-352
8. K. Bouche, F. Barbier, A. Coulet, “ Intermetallic compound layer growth between solid iron and molten aluminum”, Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 249 (1998) 167-175
9. V. N. Yeremenko, Ya. V. Natanzon, V. I. Dybkov, “The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminium system”, Journal of Materials Science, 16 (1981) 1748-1756
10. V. Joshi, A. Srivastava, R. Shivpuri, “ Intermetallic formation and its relation to interface mass loss and tribology in die casting dies”, Wear, 256 (2004) 1232-1235
11. Wang Deqing, Shi Ziyuan, Zou Longjiang, “A liquid aluminum corrosion resistance surface in steel substrate”, Applied Surface Science, 214 (2003) 304-311
12. Q. Han, S. Viswanathan, “Analysis of the mechanism of die soldering in aluminum die casting”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 34 (2003) 139-146
13. S. Kobayashi, T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment”, Materials Science and Engineering A, 338(2002) 44-53
14. S. Shankar, D. Apelian, “Die soldering: Mechanism of the interface reaction between molten aluminum alloy and tool steel”, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 33 (2002) 465-476
15. M. Sundqvist, S. Hogmark, “Effects of liquid aluminium on hot-work tool steel”, Tribology International, 26 (1993) 129-134
16. A. Bahadur, O.N. Mohanty, “Structural Studies of Hot Dip Aluminized Coatings on Mild Steel”, Materials Transactions, JIM, 32 (1991), 1053-1061
17. M.Yan, Z. Fan, “The erosion of H21 tool steel in molten A380 alloy”, Journal of Materials Science, 35 (2000) 1661-1667
18. G. Eggeler, W. Auer, H. Kaesche, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing”, Journal of Materials Science, 21 (1986) 3348-3350
19. S. Shankar, D. Apelian, “Mechanism and preventive measures for die soldering during Al casting in a ferrous mold”, JOM, 54 (2002) 47-54
20.黃朝鍾,不同塗模參數對A356鋁合金流動性之研究,國立中央大學機械工程研究所碩士論文,桃園,民國88年6月。
21.謝政宏, 黃立奇, 翁震杰, 蔡兆豐, 葉俊麟, 鋁合金重力及低壓鑄造金屬模塗模劑性能之研究, 鑄工第23卷第4期民國86年12月, p69-83
22.R. A. Richard, A Robie,B. S. Hemingway, J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 Bar(105 Pascals) Pressure and at Higher Temperatures, Washington : U.S. Govt. Print. Off., 1978, p137,262
23. James M. Gere, Stephen P. Timoshenko, Mechanics of Materials, Boston PWS 1984, H4
24. AS Handbook, 15, 2005
25.J. Campbell, Castings, Butterworth-Heinemann, 2004, p19,151-152
26.Teng-Shih Shih, In-Chan Chen, “Decomposition and Reaction of Alumina in the Aluminum Alloy Castings”, JIM, NO MRA 2005043, accepted
27.G.M. Bodner and H.L. Pardue, Chemistry, Wiley, New York, 1995, pA-4
28.I. Brain, O. Knacke, Thermochemical properties of inorganic substances, Berlin Springer, New York, 1973, p26,1342
29.陳英昌,鋁合金中氧化膜的生長與分解, 國立中央大學機械工程研究所碩士論文,桃園,民國92年6月
指導教授 施登士(Teng-Shih Shih) 審核日期 2005-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明