博碩士論文 92323054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.140.197.65
姓名 陳俊任(Chun-Jen Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以固態反應法在氧化鋁單晶表面生長鎂鋁尖晶石磊晶薄膜
(The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是以固態反應法在藍寶石表面生長鎂鋁尖晶石薄膜,利用
物理汽相沈積(PVD)及熱處理製程,生長出具優先取向性之磊晶薄膜,
並透過後續檢測等技術,確定其薄膜的成分與結構等性質。同時,藉由熱
處理的製程參數之控制,逐步探討參數條件如何影響表面薄膜的成分與性
質改變。
在實驗結果可以發現,反應薄膜在不同的熱處理溫度下,會有不同的
反應速率,並隨著溫度的升高而增加;並且在氧化鎂未反應完全之前,尖
晶石生成物之反應層厚度也會隨著熱處理時間的增加而增加,呈現線性的
變化趨勢。此外,在薄膜的磊晶方向上,由XRD 實驗得知在不同軸向的
氧化鋁基板,會形成不同方向性的尖晶石磊晶層,並發現(hhh)方向之
Mg-Al spinel 容易生長在C軸及A軸氧化鋁上,而(hh0)方向之Mg-Al spinel
則易生長在M 軸氧化鋁基板上。同時透過平面上方向的量測與表面結構的
觀察,可以獲得spine 磊晶層與sapphire 基板間in-plane 方向上的關係。另
外也可以確定的是spinel(hhh)生長的結構面為三方對稱形紋路,且表面
的對稱結構之方位與原子排列結構的方向有關。透過此篇論文在氧化鋁基
板上生成鎂鋁尖晶石所做的各項性質探討,可以作為生長其他spinel 結構
之磊晶薄膜的參考依據。
摘要(英) In this study, an epitaxial Mg-Al spinel layer was successfully grown on a
sapphire single crystal surface using solid-state reactions. The processes of
solid-state reactions with PVD and heat treatment were applied to grow
epitaxial layer with preferred orientation. And the layer composition and
structure can be confirmed by the further analyses. Through the controlling of
the heat treatment parameters, the variation of compositions and properties
influenced by different conditions on surface layer had been discussed.
From the experiment results, reaction layer showed different reaction rate
with various heat treatment, and it was proportion to the temperature and
duration. In additional, the orientation of epitaxial Mg-Al spinel layer would
depend on the cut of sapphire substrate. The hhh-type orientated spinel layer
preferred to grow on C- and A-plane sapphire, and the hh0-type orientated
spinel layer preferred to grow on M-plane sapphire. Simultaneously, the
in-plane orientation relationship between spinel epitaxial layer and sapphire
substrate could be obtained by φ scan. The morphology of the epitaxial spinel
layer surface will present a particular three-fold symmetrical structure by scanning
electron microscope. The model of atomic arrangement was employed to explain
the relationship between the surface morphology of spinel and its miller index.
關鍵字(中) ★ 磊晶薄膜
★ 固態反應法
★ 氧化鋁
★ 鎂鋁尖晶石
關鍵字(英) ★ Mg-Al spinel
★ epitaxy
★ sapphire
★ solid-state reaction
論文目次 目錄
摘要..........................................................I
英文摘要..................................................... II
目錄.........................................................III
圖表目錄..................................................... V
符號說明....................................................VII
第一章、緒論...................................................1
1.1 前言...................................................1
1.2 晶體性質與應用.........................................2
1.3 尖晶石相關研究. ........................................3
1.3.1 生長Mg-Al spinel 的反應機制.........................3
1.3.2 Mg-Al spinel 的優先取向性...........................6
1.3.3 spinel 表面結構特性................................8
1.4 研究動機和目的.........................................9
第二章、實驗方法與檢測........................................10
2.1 實驗設備..............................................10
2.1.1 射頻式磁控濺鍍...................................10
2.1.2 高溫熱處理爐.................................... 11
2.2 實驗流程..............................................11
2.2.1 鍍膜條件.........................................11
2.2.2 熱處理條件.......................................12
2.3 性質檢測與分析........................................13
2.3.1 成分分析.........................................13
2.3.2 方向性分析.......................................13
2.3.3 微結構分析.......................................14
IV
第三章、實驗結果與討論........................................16
3.1 表面成分分析..........................................16
3.2 薄膜擴散分析..........................................18
3.3 薄膜優先取向之分析....................................22
3.3.1 薄膜之垂直取向...................................22
3.3.2 薄膜與基板間之in-plane orientation 關係..............22
3.4 表面微結構分析........................................26
第四章、結論..................................................29
參考文獻..................................................... 31
V
圖表目錄
表1.1、鎂鋁尖晶石與氧化鋁之材料特性比較........................37
表3.1、面心立方體之結晶面、表面原子密度及鄰近原子數.............37
圖1.1、氧化鎂(MgO)與氧化鋁(Al2O3)之二元相圖...................38
圖1.2、Inert marker 實驗於sapphire 試片上之SEM 破斷面圖..........39
圖1.3、MgO 與Al2O3 之擴散機制示意圖...........................39
圖1.4、MgO/sapphire 反應前後之介面變化示意圖................... 40
(a)反應前,MgO/sapphire 介面呈現不連慣性
(b)反應後,MgAl2O4/sapphire 介面呈現連貫性
圖1.5、TEM 觀察MgO/sapphire 反應前後之介面之變化.............. 41
圖1.6、Ni-Al spinel 生長於{11
−2
0} Al2O3 塊材基板表面的SEM 圖.....41
圖2.1、金屬鎂(Mg)薄膜破斷面之SEM 圖........................42
圖2.2、In-plane orientation 之量測示意圖
(a)HRXRD 機台俯視圖(b)試片載具側視圖..............42
圖3.1、濺鍍Mg 金屬薄膜於
(a)A軸sapphire(b)C軸sapphire 上的XRPD檢測圖..........43
圖3.2、熱處理溫度1300℃,停留5-20 小時
(a)A 軸sapphire(b)C 軸sapphire 的XRPD 檢測..........44
圖3.3、熱處理溫度1600℃,停留5-30 小時
(a)A 軸sapphire(b)C 軸sapphire 的XRPD 檢測圖..........45
圖3.4、C 軸sapphire 濺鍍鎂薄膜後,經過
(a)1300℃ 5 小時(b)1600℃ 5 小時 之固態反應的試片表面..46
圖3.5、試片表面氧化鎂(MgO)粉末的XRPD 檢測圖
(上圖為實驗結果,下圖為標準繞射峰)...................47
VI
圖3.6、EPMA 之Line profile 掃瞄圖
(C 軸sapphire 經1600℃ 35 小時熱處理).................48
圖3.7、鎂的分佈厚度與固態反應時間的關係圖.....................48
圖3.8、spinel 薄膜破斷面之SEM 圖
(A 軸sapphire 經1600℃ 30 小時熱處理).................49
圖3.9、spinel 薄膜破斷面之EDS-Mapping 圖
(同圖3.7 之試片,觀察位置與圖3.8 相同)................49
圖3.10、C 軸sapphire 試片之spinel(110)、(100)與
sapphire R 軸(10
−1
2)的XRD φ scan........................50
圖3.11、A 軸sapphire 試片之(100)spinel 與
M軸(10
−1
0)sapphire 的XRD φ scan......................50
圖3.12、sapphire 晶格結構(a)俯視圖(b)側視圖..................51
圖3.13、固態反應生長spinel 於M 軸sapphire 試片的XRPD 檢測......51
圖3.14、C 軸sapphire 經1600℃ 30 小時熱處理後之SEM 圖..........52
圖3.15、A軸sapphire 經1600℃ 30 小時熱處理後之SEM圖.......... .52
圖3.16、MgAl2O4 在(111)的原子排列結構圖......................53
圖3.17、C 軸sapphire 經1600℃ 30 小時熱處理後之勞厄繞射圖
(同圖3.14 之試片).....................................53
圖3.18、A 軸sapphire 經1600℃ 30 小時熱處理後之勞厄繞射圖
(同圖3.15 之試片).....................................54
參考文獻 參考文獻
1. C. B. Carter, “The growth of spinel into Al2O3”, Philosophical Magazine A,
Vol.52, No.2 (1985) pp.207.
2. L. Navias, “Preperation and properties of spinel made by vapor transport
and diffusion in the system MgO-Al2O3”, Journal of the American Ceramic
Society, Vol.44 (1961) pp.434.
3. H. Sieber, D. Hesse, X. pan, St. Senz, J. Heydenreich, “TEM
investigations of spinel-forming solid state reactions: reaction mechanism,
film orientation, and interface structure durning MgAl2O4 formation on
MgO (001) and Al2O3 (11.2) single crystal substrates”, Zeitchrift fur
anorganishe und allgemeine Chemie, Vol.622 (1996) pp.1658.
4. G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, G. Mattogno,
“Study of the conduction mechanism of MgAl2O4 at different
environmental humidities”, Electrochimica Acta, Vol.38 (1993) pp.2617.
5. G. Gusmano, G. Montesperelli, E. Traversa, and G. Mattogno,
“Microstructure and electrical properties of MgAl2O4 thin-films for
humidity sensing”, Journal of the American Ceramic Society, Vol.76 (1993)
pp.743.
6. X. D. Wu, A. Inam, M. S. Hedge, B. Wilkens, C. C. Chang, D.M.Hwang, L.
Nazer, T. Venkatesan, “High critical currents in epitaxial YBa2Cu3O7-x thin
films on silicon with buffer layers”, Applied Physics Letters, Vol.54 (1989)
pp.754.
7. D. M. Hwang, R. Ramesh, C. Y. Chen, X. D. Wu, A. Inam, M. S. Hedge, B.
Wilkens, C. C. Chang, L. Nazar, T. Venkatesan, S. Miura, S. Matsubara, Y.
32
Miyasaka, N. Shohata, “Epitaxial relations between in situ
superconducting YBa2Cu3O7-x thin films and BaTiO3/MgAl2O4/Si
substrates”, Journal of Applied Physics, Vol.68 (1990) pp.1772.
8. 余樹楨, “晶體之結構與性質” (民國85 年11 月) 國立編譯館.
9. E. A. Marguire Jr., R. L. Gentilman, “Press forging small domes of spinel”,
American Ceramic Society Bulletin, Vol.60 (1981) pp.255.
10. D. W. Roy, J. L. Hastert, “Polycrystalline MgAl2O4 spinel for high
temperature windows”, Ceramic Engineering and Science Proceedings,
Vol.4 (1983) pp.502.
11. P. Kumar, K. H. Sandhage, “The fabrication of near net-shaped spinel
bodies by the oxidative transformation of Mg/Al2O3 precursors”, Journal
of Materials Research, Vol.13 (1998) pp.3423.
12. C. J. Ting, H. Y. Lu, “Defect reactions and the controlling mechanism in
the sintering of magnesium aluminate spinel”, Journal of the American
Ceramic Society, Vol.82, No.4 (1999) pp.841.
13. R. E. Carter, “Mechanism of solid-state reaction between magnesium
oxide and alumina oxide and between magnesium oxide and ferric oxide”,
Journal of the American Ceramic Society, Vol.44, No.3 (1961) pp.116.
14. W. P. Whitney II, V. S. Stubican, “Interdiffusion studies in the system
MgO-Al2O3”, The Journal of Physics and Chemistry of Solids, Vol.32
(1971) pp.305.
15. P. Zhang, T. Debroy, S. Seetharaman, “Interdiffusion in the MgO-Al2O3
spinel with or without some dopants”, Metallurgical and Materials
Transactions. A, Vol.27A (1996) pp.2105.
16. K. J. D. Mackenzie, M. J. Ryan, “Effect of electric fields on solid-state
reactions between oxides”, Journal of Materials Science, Vol.16 (1981)
33
pp.579.
17. E. B. Watson, J. D. Price, “Kinetics of the reaction MgO + Al2O3 →
MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000℃ and 1.0 to
4.0 GPa”, Geochimica et Cosmochimmica Acta, Vol.66, No.12 (2002)
pp.2123.
18. R. C. Rossi, R. M. Fulrath, “Epitaxial growth of spinel by reaction in the
solid state”, Journal of the American Ceramic Society, Vol.64 (1963)
pp.368.
19. D. X. Li, P. Pirouz, A. H. Heuer, S. Yadavalla, C. P. Flynn, “A
high-resolution electron microscopy study MgO/Al2O3 interfaces and
MgAl2O4 spinel formation”, Philosophical Magazine A, Vol.65, No.2
(1992) pp.406.
20. P. Kumar, S. A. Dregia, K. H. Sandhage, “Epitaxial growth of magnesia
and spinel on sapphire during incongruent reduction in molten
magnesium”, Journal of Materials Research, Vol.14 (1999) pp.3312.
21. R. E. Carter, W. L. Roth, C. A. Julien, “Orientation relation between a
hematite precipitate and its ferrite host”, Journal of the American Ceramic
Society, Vol.42 (1959) pp.533.
22. P. A. Stampe, M. Bullock, W. P. Tucker, R. J. Kennedy, “Growth of MgO
thin films on M-, A-, C- and R-plane sapphire”, Applied Physics,. Vol.32
(1999) pp.1778.
23. C. H. Lei, G. Van Tendeloo, J. G. Lisoni, M. Siegert, J. Schubert, “Growth
kinetic of MgO film on r-plane of sapphire: microstructural study”, Journal
of crystal growth, Vol.226 (2001) pp.419.
24. Z. X. Mei, X. L. Du, Z. Q. Zeng, Y. Guo, J. Wang, J. F. Jia, Q. K. Xue,
“Two-step growth of MgO films on sapphire (0001) substrates by radio
34
frequency plasma-assisted molecular beam epitaxy”, Chinese Physics
Letters, Vol.21, No.2 (2004) pp.410.
25. C. B. Carter, Y.K. Rasmussen, “Growth of spinel particles on alumina thin
films-I. orientation relationships and shape of the particles”, Acta
Metallurgica et Materialia, Vol.42, No.8 (1994) pp.2729.
26. C. B. Carter, Y. K. Rasmussen, “Growth of spinel particles on alumina thin
films-II. Morphology and crystallography of the interface”, Acta
Metallurgica et Materialia, Vol.42, No.8 (1994) pp.2741.
27. H. R. Thirsk, E. J. Whitmore, “An electron diffraction study of the surface
reaction between nickel oxide and corundum”, Transactions of the Faraday
Society, Vol.36 (1940) pp.565.
28. Z. Bi, R. Zhang, X. Wang, S. Gu, B. Shen, Y. Shi, Z. Liu, Y. Zheng,
“Synthesis of zinc aluminate spinel film through the solid-phase reaction
between zinc oxide film and α-alumina substrate”, Journal of the American
Ceramic Society, Vol.86, No.12 (2003) pp.2059.
29. G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, “XPS analysis of
the interface of ceramic thin films for humidity sensors”, Applied Surface
Science, Vol.70–71 (1993) pp.363.
30. J. B. Heaney, G. Hass, M. McFarland, “Spinel (Al2O3:MgO):
refractive-index variations and lack of stoichiometry in evaporated films”,
Applied Optics, Vol.20 (1981) pp.2335.
31. M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodoma, H. Yamawaki, T.
Yamaoka, “Vapor phase epitaxial growth of MgO.Al2O3”, Journal of the
Electrochemical Society, Vol.129 (1982) pp.2569.
32. M. Putkonen, M. Nieminen, L. Niinisto, “Magnesium aluminate thin films
by atomic layer deposition from organometallic precursors and water”,
35
Thin Solid Films, Vol.466 (2004) pp.103.
33. S. Mathur, M. Veith, T. Ruegamer, E. Hemmer, H. Shen, “Chemical vapor
deposition of MgAl2O4 thin films using different Mg-Al alkoxides: Role
of precursors chemistry”, Chemistry of Materials, Vol.16 (2004) pp.1304.
34. D. Hesse, H. Bethge, “Solid state reactions for the epitaxial growth of
spinel films”, Journal of Crystal Growth, Vol.65 (1983) pp.69.
35. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, S. P. Denbaars, “Structural
characterization of nonpolar (11
−2
0) a-plane GaN thin films grown on
(1
−1
02) r-plane sapphire”, Applied Physics Letters, Vol.81, No.3 (2002)
pp.469.
36. 汪建民, “材料分析” (1998) 中國材料科學學會.
37. 許樹恩, 吳泰伯, “X 光繞射原理與材料結構分析” (1993) 行政院國家
科學委員會精密儀器發展中心.
38. Paul G. Kotula, C. B. Carter, “Volume expansion and lattice rotations in
solid-state reactions between oxides”, Scripta Metallurgica et Materialia,
Vol.32, No.6 (1995) pp.863.
39. D. Hesse, H. Bethge, “Formation og Mg2TiO4 epitaxial thin films on
MgO by solid state reaction”, Journal of Crystal Growth,Vol.52 (1981)
pp.875..
40. H. Sieber, D. Hesse, P. Werner, “Misfit accommodation mechanisms at
moving reaction fronts during topotaxial spinel-forming thin-film
solid-state reactions: a high-resolution transmission electron microscopy
study of five spinels of different misfits”, Philosophical Magazine A,
Vol.75, No.4 (1997) pp.889
41. H. Sieber, P. Werner, D. Hesse, “The atomic structure of the reaction front
36
as a function of the kinetic regime of a spinel-forming solid-state reaction”,
Philosophical Magazine A, Vol.75, No.4 (1997) pp.909.
42. S. Y. Zhang, J. M. Cowley, “High resolution electron microscopy and
nanodiffraction study of the MgO/Al interface”, Thin Solid Films, Vol.148
(1987) pp.301.
43. J. J. Comer, N. C. Tombs, J. F. Fitzgerald, “Growth of single-crystal and
polycrystalline thin films of MgAl2O4 and MgFe2O4”, Journal of the
American Ceramic Society, Vol.49, No.5 (1966) pp.237.
44. A. Kelly, G. W. Groves, “Crystallography and Crystal Defects” (1970)
Wesley.
45. 姚連增, “晶體生長基礎” (1995) 中國科學技術大學出版社.
46. S. V. Yanina, C. B. Carter, “Terraces and ledges on (001) spinel surfaces”,
Surface Science Letters, Vol.513 (2002) pp.L402.
47. S. V. Yanina, C. B. Carter, “Dislocation at spinel surfaces”, Surface
Science, Vol.511 (2002) pp.133.
48. R. H. Abbaschian 原著; 劉偉隆, 林淳杰, 曾春風, 陳文照 編譯, “物理
冶金” (2000) 全華科技圖書股份有限公司.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明