博碩士論文 92323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.236.231.61
姓名 范智文(Zhi-Wen Fan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬粉末射出成型三維毛細吸附脫脂觀察與分析
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在金屬粉末射出成形過程中,脫脂的步驟影響很大,主要原因是在於其過程極為耗時,和脫脂不當會導致成品易產生損壞。故為限制整個金屬射出成型產能的主要關鍵。
本研究以三維毛細吸附脫脂實驗為主使用金屬粉末而非鋼珠模擬以接近實際脫脂情形;做一吸附實驗,以空孔度、胚體厚度、脫脂溫度、不同吸附材粉末粒徑、不同胚體粉末粒徑為變因,探討這些變因對脫脂百分比的影響性,得到配合小胚體厚度和吸附材粉末粒徑要小,胚體粉末粒徑要大或是高胚體空孔度,以及適當的脫脂溫度可得到較快的脫脂百分比以及脫脂過程中無因次參數的變化加以分析,可知毛細力為主導吸附脫脂的主要力量,其次推導出一套符合本實驗中二維吸附部分的數值模擬,以探討理想的狀況下,胚體的脫脂百分比與脫脂時間之間的相互關係。兩者相互比對,可明白在脫脂過程中,理論模擬與實驗操作的差異性。
摘要(英) Among the MIM processes, debinding is the most important and time-consuming step. Failing in this key process always leads to the overall failure of the MIM product. Therefore, it is the key point of the limiting the production rate of the MIM process.
To analyze the three dimension of wick debinding process, the influence of five different factors (porosity, compact height, debinding temperature, wick powder size, compact powder size) on the final debinding percentage is investigated. Results show that high porosity compact, small wick powder size, large compact powder size, and appropriate debinding temperature can increase the debinding percentage. By the dimensionless analysis of the parameters in debinding process, the capillary force is found to be the main driving force in the wick debinding. Furthermore, a mathematic of model is derived to simulate the idealized, two-dimensional debinding process, and the debinding percentage versus debinding time is calculated. The difference between simulation and experiment is compared and analyzed.
關鍵字(中) ★ 毛細力
★ 脫脂百分比
★ 空孔度
★ 毛細吸附脫脂
★ 金屬粉末射出成形
關鍵字(英) ★ metal powder injection molding
★ porosity
★ wick debinding
★ debinding percentage
★ capillary force
論文目次 中文摘要..................................................................................................Ⅰ
英文摘要..................................................................................................Ⅱ
目錄..........................................................................................................Ⅲ
表目錄.......................................................................................................V
圖目錄......................................................................................................VI
符號說明..................................................................................................Ⅸ
第一章 序論............................................................................................1
1-1 起源...................................................................................1
1-2 MIM成形技術..................................................................2
1-2-1 MIM製造程序.....................................................2
1-2-2 MIM的優缺點.....................................................4
1-3 影響MIM成品的因子.....................................................5
1-3-1 粉末原料............................................................6
1-3-2 黏結劑.................................................................8
1-3-3 脫脂技術.............................................................9
1-4 MIM脫脂的分類............................................................10
1-5 文獻回顧.........................................................................13
1-6 研究方向.........................................................................20
第二章 理論模式..................................................................................22
2-1 統御方程式.....................................................................22
2-2 空孔度.............................................................................23
2-3 滲透度.............................................................................24
2-4 毛係壓力.........................................................................25
2-5 飽和度.............................................................................26
2-6 無因次參數.....................................................................27
2-7 基本假設與數學模式.....................................................28
第三章 實驗裝置與步驟......................................................................31
3-1 實驗設備.........................................................................31
3-2 實驗材料.........................................................................34
3-3 實驗方法.........................................................................35
3-3-1 胚體壓製...........................................................35
3-3-2 胚體脫脂...........................................................36
3-3-3 影像與數據擷取...............................................36
3-4 注意事項.........................................................................37
第四章 結果與討論..............................................................................39
4-1 重力對毛細脫脂脂影響 .....................................................39
4-2 吸附材平均飽和度和其粒徑大小及胚體空孔度之
關係................................................................................40
4-3 空孔度對對毛細吸附脫脂的影響.................................41
4-4 胚體厚度對三維毛細吸附脫脂的影響.........................42
4-5 脫脂溫度和胚體粒徑對三維毛細吸附脫脂的影響….45
4-6 不同吸附材粒徑下的三維毛細吸附脫脂………...........46
4-7 無因次參數...................................................................47
第五章 結論..........................................................................................49
參考文獻..................................................................................................52
表 目 錄
表 1-1 MIM與P/M特性比較............................................................56
表 3-1a 黏結劑和鐵粉性質表.............................................................57
表 3-1b 鋁粉性質表.............................................................................58
圖 目 錄
圖 1-1 MIM製造流程圖[2]...............................................................59
圖 1-2 MIM產品設計優勢[4]...........................................................60
圖 1-3 工業上脫脂技術的分野.........................................................61
圖 1-4 MIM熱脫脂示意圖[13]...........................................................62
圖 2-1 粉末在不同幾何配置下的堆疊狀態[25]..................................63
圖 2-2 毛細脫脂飽和度示意圖...........................................................64
圖 2-3 二維吸附胚體模型示意圖.......................................................65
圖 2-4 數值模擬胚體脫脂百分比與脫脂時間關係...........................66
圖 3-1 胚體壓製實驗裝置圖...............................................................67
圖 3-2 胚體脫脂模具圖.......................................................................68
圖 3-3a 實驗步驟流程圖-胚體壓製......................................................69
圖 3-3b 實驗步驟流程圖-胚體脫脂.....................................................70
圖 4-1 以全包覆吸附脫脂流動波前剖面圖.......................................71
圖 4-2 不同吸附材粒徑下的飽和度...................................................72
圖 4-3 二維毛細吸附時,不同胚體空孔度之脫脂百分比變化圖…73
圖 4-4 三維毛細吸附時,不同胚體空孔度之脫脂百分比變化圖…74
圖 4-5 在不同胚體厚度下,脫脂百分比之變化圖...........................75
圖 4-6 胚體厚度5mm其流動波前剖面圖.........................................76
圖 4-7 胚體厚度9mm其流動波前剖面圖.........................................77
圖 4-8 不同溫度下,脫脂百分比之變化圖........................................78
圖 4-9 脫脂時間為40分鐘時,溫度和脫脂百分比之變化圖..........79
圖 4-10 不同胚體粒徑下之脫脂百分比變化圖.................................80
圖 4-11 胚體粒徑15μm其流動波前剖面圖......................................81
圖 4-12(a) 不同吸附材粒徑下之脫脂百分比變化圖........................82
圖 4-12(b) 不同吸附材粒徑下之脫脂百分比變化圖........................83
圖 4-13 不同脫脂溫度下之無因次參數變化圖.................................84
圖 4-14 不同胚體厚度下之無因次參數變化圖.................................85
參考文獻 參考文獻
1.黃坤祥,“台灣MIM研究動機”,粉末冶金會刊,p.175-179 (1995).
2.陳文信,“金屬粉末射出成型技術”,機械工業雜誌, Vol.154,pp.148-158 (1996)
3.陳文信,“金屬粉末射出成型零件市場”,ITRI, MR-151-C209 材料產業透析(1995).
4.周村裕幸,“金屬粉末射出成型製程”, 粉末冶金會刊,Vol.22, No.1, pp.31-40 (1997).
5.R. M. German and K. F. Hens, S. P. Lin, “Key Issues in Powder Injection Molding,” Ceramic Bulletin., Vol.70, No.8, pp. 1294-1302 (1991).
6.蘇英源,“粉末冶金學”, 全華科技圖書股份有限公司 (2001).
7.劉世騏,“合金增進粉末射出成形鐵鎳基材料之性能”,台灣工業技術學院機械工程研究所碩士論文 (1995).
8.鄒宗漢,“射出成形法中脫脂製程之研究”,台灣大學材料科學與工程學研究所碩士論文 (1991).
9.R. M. German, “Powder Injection Molding,” Metal Powder
Industries Federation., Princetion, NJ, pp.321-346 (1990).
10.J. Woodthorpe, M. J. Edirisinghe and J. R. G. Evans, “Proterties of Ceramic Injection Moulding Formation,” Powder Metal. Sci, Vol.24, No.2, pp.1038-1048 (1989).
11.J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, “A Catalogue of Ceramic Injection Moulding Defects and Their Causes,” Industrial Ceramics., Vol.9, No.8, pp.72-82(1989).
12.K. S. Hwang and T. H. Tsou, “Thermal Debinding of Powder
Injection oldied Parts : Observation and Mechanisms,” Metallurgical Transaction., Vol.23, No.1, pp.192-277 (1992).
13.R. M. German, “Theory of Thermal Debinding,” Int. J. Powder Metal., Vol.23, No.4, pp.237-245 (1987).
14.B. R. Patterson and C. S. Aria, “Debinding Injection Molding Materials by Melt Wicking,” Journal of Materials Processing Technology., Vol.41, Iss.8, pp.22-24(1989).
15.B. K. Lograsso and R. M. German, “Thermal Debinding of Injection Moldied Powder Compacts,” Powder Metallurgy Internation., Vol.22, No.1, pp.17-22(1990).
16.J. K. Wright and J. R. G. Evans, “Removel of Organic Vehicle from Moulded Ceramic Bodies by Capillary Action,” Ceramics International., Vol.6, No.17, pp.79-87 (1991).
17.R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang and J. Duszczyk, “Wick-debinding in Powder Injection Molding,” Powder Metall.,Vol.30, No.1,pp.115-124(1994).
18.R. Vetter, W. R. Horninge, P. J. Vervoort, L. Z. Zhuang, I. Majewska-Glabus, and J. Duszczyk, “Squared Root Wick Debinding Model for Powder Injection Moulding,” Powder Matell.,Vol.37, No.4, pp.265-271(1994).
19.Eric M Summers and Mufit Akinc, “Wick-debinding of Molybdenum-Silicon-Boron Extrudates,” Journal of the American Ceramic Society., Vol38, No.47, Jul, p 1670-1674(2000).
20.K. C. Hsu and G. M. Lo, “Effect of Binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks: Experimental Design,” Powder Metall., Vol.39, No.4, pp.286-290 (1996).
21.K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The effects of Binder on the Mechanical Properties of Carbonyl Iron Products,” Journal of Materials Processing Technology, Iss.8, pp.17-21 (1989).
22.C. C. Chen and L. W. Hourng, “Numerical Simulation of Two-dimensional Wick Debinding in MIM by Body Fitted Finite Element Method,” Powder Metallurgy., ol.42, No.4, pp.313-319
(1999).
23.M. S. Shin and L. W. Hourng, “Numerical Simulation of Capillary-induced Flow in a Powder-embedded Porous Matrix,” Advance Powder Tech., Vol.12, No.4, pp.451-480 (2001).
24.C. Y. Chang, “Numerical Simulation of Two-dimensional Wick Debinding in Metal Powder Injection Molding,” Advanced Powder Technology., Vol.14, No.2, pp.177-194 (2003).
25.Carlos A. Grattoni, Richard A. Dawe, “Anisotropy in Pore Structure of Porous Media,” Powder Technology., Vol.85, pp.143-151(1995).
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2005-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明