博碩士論文 92323069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.235.74.77
姓名 張凱嘉(Kai-Chia Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 矽相關半導體材料光學模式之實驗量測儀器發展
(Development of Experimental Validation on Optical Property Models for Silicon-Related Materials and Structures)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文是運用傅立葉轉換紅外線光譜儀 (FT-IR spectrometer) 搭配高溫穿透及反射腔體成為可量測材料在溫升狀態下光學性質之設備。經由介紹快速熱製程後我們了解材料光學性質在溫度量測上所扮演的重要角色,此外也完整地整理文獻並說明發展此套設備之背景。在設備驗證方面,整個實驗是經由量測矽晶圓於升溫時所表現的穿透率和反射率,以熱輻射和電磁波理論所提供關係估計出矽晶圓的光學性質。
從實驗結果得知在量測溫升穿透率部分,於短波範圍時因為光子的能量強度大於矽的能隙,所以無論矽晶圓溫度為何光子都會於晶圓內部被吸收而呈現不穿透的現象。而大於吸收邊界的中波段則是會強烈地受到溫度影響,其隨著溫度的上升穿透率會非常明顯地降低。接下來的長波段則是受到晶格震盪吸收的影響在較低溫時有著比前者稍低的穿透率且有明顯的吸收峰產生,等到溫度繼續上升時其穿透率也有下降的趨勢,並且因為晶格震盪與自由載子的雙重作用影響而造成穿透率下降的速度將會比前者快速。
此外,在反射率量測部分則可以發現其隨著溫度遞增而減小,不過在高溫時將會呈現一定值狀態。在這裡我們將以溫度與自由載子的濃度影響作為出發解釋其發生的原因。再來短波的部分則呈現與其它波段相反的情況。
我們最後將上述兩種光學性質整理我們可以得到放射率,而從結果中我們也可以觀察到放射率會隨著溫度上升而遞增。此外我們也計算出波長於0.95μm 時隨溫度不同所呈現的放射率。
摘要(英) This study uses Fourier Transform Infrared spectrometer (FT-IR spectrometer) with high temperature transmittance and reflectance cell to be a system, which can be used for measuring the optical properties of materials at elevated temperature. After introducing the Rapid Thermal Processing (RTP), we know that optical properties of materials play an important role in the temperature measuring. We use our equipment to measure transmissivity and reflectivity of lightly doped silicon wafer and use the optical relation having empirical ones to verify the equipment applicability.
From the experimental results, we can observe the phenomenon. There is no transmissivity in the short wavelength. It is caused by the photon energy is greater than silicon bandgap energy and silicon wafer is opaque. When the wavelength is greater than absorption edge, the transmissivity becomes lower obviously with increasing temperature. For longer wavelength, it will be affected by lattice vibration absorption and has obvious peaks at low temperatures. With temperature increasing, it has a trend of lowering transmissivity by effects of lattice vibration and free carrier absorption mechanisms.
The reflectivity decay with increasing temperature, but will be a constant in high temperature. Here, we will interpret the phenomenon by temperature and free carrier concentration. In the short wavelength it will be a different circumstance.
Finally, we arrange above transmissivity and reflectivity and have emissivity. We will observe the emissivity increase at elevated temperature. Besides, we calculate the emissivity in wavelength 0.95μm at different temperatures.
關鍵字(中) ★ 半導體
★ 放射率
★ 光學性質
★ 快速熱製程
關鍵字(英) ★ optical properties
★ RTP
★ emissivity
★ semiconductor
論文目次 中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I
Abstract‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥II
誌謝‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥III
Table of contents‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥IV
List of figures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VII
List of Symbols‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥IX
Chapter 1 Introduction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.1 The Background of RTP system‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.2 RTP system‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2
1.3 Literature review‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
1.4 Motivation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18
Chapter 2 Theoretical Background‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20
2.1 Thermal radiation fundamentals‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20
a. Blackbody radiation‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20
b. Emissivity‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20
c. The link between emissivity and absorptivity‥‥‥‥‥‥‥‥‥21
2.2 Absorption process‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21
a. Interband transition‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22
b. Transition between a band and impurity level‥‥‥‥‥‥‥‥‥24
c. Intraband transition‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24
d. Free-carrier absorption‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25
e. Absorption by lattice vibrations‥‥‥‥‥‥‥‥‥‥‥‥‥‥25
f. Temperature effect‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥26
2.3 Dielectric functions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27
2.4 Ray tracing method‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥28
a. Electromagnetic theory‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥28
b. Ray tracing technique‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
2.5 The Drude model for doped silicon‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
Chapter 3 Experimental Setup and Procedure‥‥‥‥‥‥‥‥‥‥‥‥43
3.1 Hardware of a FT-IR spectrometer‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
a. Infrared light source‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
b. Michelson interferometer‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
c. Detectors‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥44
3.2 How a FT-IR spectrometer works‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥44
3.3 High temperature transmittance cell‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
3.4 High temperature reflectance cell‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥48
3.5 Procedures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥49
a. The transmissivity measurement‥‥‥‥‥‥‥‥‥‥‥‥‥‥49
b. The reflectivity measurement‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
Chapter 4 Results and Discussions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51
4.1 Transmissivity at different temperatures‥‥‥‥‥‥‥‥‥‥‥‥‥51
4.2 Reflectivity at different temperatures‥‥‥‥‥‥‥‥‥‥‥‥‥‥54
4.3 Emissivity at different temperatures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥57
Chapter 5 Conclusions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61
5.1 Conclusions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61
5.2 Recommends‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62
Reference‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥63
參考文獻 1. Timans P. J., 1996, “The role of thermal radiative properties of semiconductor wafers in rapid thermal processing”, Mat. Res. Soc. Symp. Proc., vol. 429, pp. 3-14.
2. Roozeboom F., 1996, ‘‘The Thermal Radiative Properties of Semiconductors’’, Advances in Rapid Thermal and Integrated Processing, F. Roozeboom ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1–34.
3. International Technology Roadmap for Semiconductors 1994, Update; Semiconductor Industry Association, 4300 Stevens Creek Blvd., San Jose, CA 95129 (http://public.itrs.net).
4. International Technology Roadmap for Semiconductors 2005, Update; Semiconductor Industry Association, 4300 Stevens Creek Blvd., San Jose, CA 95129 (http://public.itrs.net).
5. Gluck, M., Lerch, W., Loffelmacher, D., Hauf, M. and Kreiser, 1999, ‘‘Challenges and Current Status in 300 mm Rapid Thermal Processing’’, Microelectron. Eng., vol. 45, pp.237-246.
6. Timans P. J., 1998, “Rapid thermal processing technology for 21st century”, Mater. Sci. Semicond. Proc., vol. 1, pp.169-179.
7. Singh R., Parihar V., Chen Y., Poole K. F., Nimmagadda S. V. and Vedula L., et al., 1999, ‘‘Importance of Rapid Photothermal Processing in Defect Reduction and Process Integration’’, IEEE Trans. on Semiconductor Manufacturing, vol. 12(1), pp.36-43.
8. Xiao, H., 2001,”Introduction to Semiconductor Manufacturing Technology”, 1st ed., Prentice Hall, New Jersey.
9. http://www.fabsurplus.comequip_owned5733.html
10. Jona F. and Wendt H. R., 1966, ” Pyrometric Measurements of Si, Ge and GaAs Wafers Between 100°C and 700°C”, J. Appl. Phys., vol. 37(9), pp.3637-3638.
11. Varshni Y. P., 1967,” Temperature Dependence of the Energy Gap in Semiconductors”, Physica, vol. 34(1), pp.149-154.
12. Sato T., 1967, ‘‘Spectral Emissivity of Silicon,’’ Jpn. J. Appl. Phys., vol. 6, pp.339–347.
13. G. E. Jellison Jr. and Burke H. H., 1986, ” The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths”, J. Appl. Phys., vol. 60(2) , pp.841-843.
14. Magunov A. N. and Mudrov E. V., 1991, “Optical-properties of lightly doped monocrystalline silicon in absorption edge range at 300-K-700-K”, Opt. Spectrosc., vol. 70(1), pp.145-149.
15. Sturm J. C., Schwartz P. V. and Garone P. M., 1990, ‘‘Silicon temperature measurement by infrared transmission for rapid thermal processing applications’’, Appl. Phys. Lett., vol. 56(10), pp.961–963.
16. Magunov A. N., 1992, “Temperature dependence of the refractive index of silicon single-crystal in the 300-700-K range”, Opt. Spectrosc., vol. 73(2), pp.205-206.
17. Li H. H., 1980, ‘‘Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives’’, J. Phys. Chem. Ref. Data, vol. 9, pp.561–658.
18. Timans P. J., 1993, ‘‘Emissivity of silicon at elevated temperatures’’, J. Appl. Phys., vol. 74 (10), pp.6353–6364.
19. Macfarlane G. G., Mclean T. P., Quarrington J. E. and Roberts V., 1958, “Fine Structure in the Absorption-Edge Spectrum of Si”, Phys. Rev., vol. 111, pp.1245-1254.
20. Vandenabeele P. and K. Maex, 1992, ‘‘Influence of temperature and backside roughness on the emissivity of Si wafers during rapid thermal processing,’’ J. Appl. Phys., vol. 72(12), pp.5867–5875.
21. Morin F. J. and Maita J. P., 1954, “Electrical Properties of Silicon Containing Arsenic and Boron”, Phys. Rev., vol. 96, pp.28-35.
22. Zhou Z. H., Compton S., Yang I. and Reif R., 1994, ”In situ semiconductor materials characterization by emission Fourier transform infrared spectroscopy”, IEEE Trans. on Semiconductor Manufacturing, vol. 7(1), pp.87-91.
23. Jellison G. E. and Modine F. A., 1994, ‘‘Optical functions of silicon at elevated temperatures’’, J. Appl. Phys., vol. 41(6), pp.3758-3761.
24. Rogne H., Timans P. J. and Ahmed H., 1996, ‘‘Infrared absorption in silicon at elevated temperatures’’, Appl. Phys. Lett., vol. 69(15), pp.2190–2192.
25. Ravindra N. M., Abedrabbo S., Chen W., Tong F. M., Nanda A. K., and Speranza A. C., 1998, “ Temperature-Dependent Emissivity of Silicon-Related Materials and Structures”, IEEE Trans. on Semiconductor Manufacturing, vol. 11(1), pp.30-39.
26. Sturm J. C. and Reaves C. M., 1992, “ Silicon Temperature-Measurement by Infrared Absorption - Fundamental Processes and Doping Effects”, IEEE Trans. Electron Devices, vol. 39, pp.81-88.
27. Svantesson K.G. and Nilsson N.G., 1979, “ Determination of the temperature dependence of the free carrier and interband absorption in silicon at 1.06μm”, J. Phys. C: Solid State Phys., vol. 12, pp.3837-3842.
28. Lee B. J. and Zhang Z. M., 2003, “Development of experimentally validated optical property models for silicon and related materials”, 11th IEEE International Conference on Advanced Thermal Processing of Semiconductors.
29. Edwards D. F., 1985, “Silicon (Si)”, Handbook of Optical Constants of Solids, Palik E. D. (ed.), Academic Press, Orlando, pp.547-569.
30. Modest M. F., 2003, “Radiative Heat Transfer”, 2nd ed., New York, Academic Press.
31. Zhang Z. M., Fu C. J. and Zhu Q. Z., 2003, “Optical and Thermal Radiative Properties of Semiconductors Related to Micro/Nanotechnology”, Advances in Heat Transfer, vol. 37, New York, Academic press, pp.179-296.
32. Kittel C., 1996, “Introduction to Solid State Physics”, 7th ed., New York, Wiley.
33. Cohen M. L. and Chelikowsky J. R., 1988, “Electronic Structure and Optical Properties of Semiconductors”, 1st ed., Berlin, Springer-Verlag.
34. Pankove J. I., 1971, “Optical Processes in Semiconductors”, Dover Publications, New York.
35. Hebb J. P., Cravalho, E. G. and Filk M. I., 1995, “Thermal radiation absorption in doped semiconductors due to direct intersubband transitions”. J. Heat Transfer, vol. 117, pp.948-954.
36. Timans P. J., 1996, “The Thermal Radiative Properties of Semiconductors”, Advances in Rapid Thermal and Integrated Processing, F. Roozeboon (ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.35-101.
37. G. E. Jellison Jr. and Lowndes D. H., 1982, ‘‘Optical Absorption Coefficient of Silicon at 1.152μm at Elevated Temperatures’’, Appl. Phys. Lett., vol. 41, pp.594–596.
38. Neamen D. A., 2003, “Fundamental of Semiconductor Physics and Devices”, New York, McGraw. Hill.
39. Smith B. C., 1996, “Fundamentals of Fourier Transform Infrared spectroscopy”, CRC press, Boca Raton.
40. Hebb J. P., 1997, “Pattern Effects in Rapid Thermal Processing,” Ph. D. Dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
41. Timans P. J., 1996, ‘‘The Thermal Radiative Properties of Semiconductors’’, Advances in Rapid Thermal and Integrated Processing, F. Roozeboom ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp.35-101.
42. Spitzer W. G. and Fan H. Y., 1957, “Determination of Optical Constants and Carrier Effective Mass of Semiconductors”, Phys. Rev., vol. 1, pp.882-890.
43. Gaylord T. K. and Linxwiler J. N., 1976, “A Method for Calculating Fermi Energy and Carrier Concentrations in Semiconductors”, Am. J. Phys., vol. 44, pp.353-355.
44. Thurmond C. D., 1975, “Standard Thermodynamic Functions for Formation of Electrons and Holes in Ge, Si, Gaas, and Gap”, J. Electrochem. Soc., vol. 122, pp.1133-1141.
45. Sze S. M., 2002, “Semiconductor Devices, Physics and Technology”, 2nd ed., Wiley, New York.
46. Sze S. M., 1981, “Physics of Semiconductor Devices”, 2nd ed., Wiley, New York.
47. Beadle W. E., Tsai J. C. C. and Plummer R. D., 1985, “Quick Reference Manual for Silicon Integrated Circuit Technology”, Wiley, New York.
48. Chang C. C., 1999, “Measurement of Radiative properties for Wafer and Heating System in Rapid Thermal Processing Furnace”, Ms. Dissertation, Department of Mechanical Engineering, National Chiao-Tung University, Hsin-chu, Taiwan.
49. Press W. H., Flannery B. P., Teukolsky S.A. and Vetterling W. T., 1986, “Numerical Recipes,” Ch. 9, Cambridge University Press, New York.
50. Lee B. J., Zhang Z. M., Early E. A., DeWitt D. P. and Tsai B. K., 2005, “Modeling Radiative Properties of Silicon with Coatings and Comparison with Reflectance Measurements”, J. Thermophys. Heat Transfer, Vol. 19, pp.558-569.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明