博碩士論文 92323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:35.172.217.40
姓名 林弈宏(Yi-Hung Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 被動式微混合器之數值模擬
(Numerical Simulation of Passive Micromixers)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來微流體系統有朝著分析化學與生命科學發展的趨勢,其中不同流體混合對於整個微流體系統的反應效率有舉足輕重的影響。
本文是利用FEMLAB軟體模擬微混合器(T型以及注入型)的流場特性和混合品質,由數值結果發現在T型微混合器(管道寬為600 μm,管道高為300 μm)中依雷諾數的大小,可分成三種截然不同的流場,分別是1) 層化流(stratified flow) (Re<40),2) 渦流(vortex flow) (40150);其中層化流與渦流的流場對於提升混合品質並無太大的助益,但當流場為捲入流,可以發現混合品質大為提升。
對於注入式微混合器的計算(管道寬與高均為1000 μm,噴嘴寬度70.71–200 μm),是利用面對面的陣列式微噴嘴來注入流體,此舉最大的好處是能讓欲混合的流體之間接觸面積增加,而由數值結果發現:1) 兩側的微噴嘴尺寸降低有助於提升混合品質,2) 將混合室的寬度降低,使兩流體相遇的距離縮短,其混合品質較高,3) 入口Re增加會使得的混合品質降低,但可有效縮短混合的時間。
摘要(英) Analytical chemistry and life sciences are the recent application trend in the microfluidic system, in which various fluids mixing have profound effect on the reaction efficiency in the microfluidic system.
This work performs a numerical study on the flow characteristic and mixing quality of the T-type and injection micromixers. Numerical simulation reveals three distinct flow patterns in the T-type mixer (the channel width is 600 μm and the channel height is 300 μm): 1) stratified flow (Re<40), 2) vortex flow (40150). While the stratified flow and vortex flow does not enhance the mixing quality, but the engulfment flow leads to significant improvement of mixing quality.
For the injection micromixer, simulations are perform for the injection mixer with the channel width and height of 1000 μm and the injection nozzle width various from 70.71 to 200 μm. The utilization of the face-to-face injection nozzle helps the increment of fluid contact area. From simulation results, we found that the enhancement of mixing quality can be achieved either from decreasing the nozzle size or from decreasing the width of the mixing chamber. While increasing the inlet Reynolds number leads to reduce the mixing quality, but it does effectively shorten the mixing time.
關鍵字(中) ★ 微混合器
★ 微流體
★ 數值模擬
關鍵字(英) ★ Micromixer
★ Microfluidic
★ Numerical simulation
論文目次 中文摘要..............................................................i
英文摘要..............................................................ii
目錄.................................................................iii
表目錄................................................................vi
圖目錄...............................................................vii
符號說明..............................................................xi
第一章 前言............................................................1
1.1 緒論...............................................................1
1.1.1 混合效能評估.......................................................6
1.2 文獻回顧..................................................................7
1.2.1 被動式微混合器...................................................7
1.2.2 主動式微混合器.................................................12
1.3 研究方向................................................................13
第二章 理論基礎與數值分析.....................................14
2.1 統馭方程式............................................................14
2.1.1 基本假設.............................................................14
2.1.2 統馭方程式.........................................................14
2.2 數值分析................................................................15
2.2.1 模擬軟體(FEMLAB)簡介....................................15
2.2.2 通式定義.............................................................16
2.2.3 邊界條件.............................................................18
2.3 微混合器結構........................................................19
2.3.1 T型微混合器.......................................................19
2.3.2 注入式微混合器..................................................21
第三章 結果與討論......................................................23
3.1 網格測試.................................................................23
3.1.1 T型微混合器網格測試........................................23
3.1.2 注入式微混合器網格測試...................................23
3.2 T型管道微混合器混合品質分析............................24
3.2.1 雷諾數對混合效果的影響...................................24
3.2.2 提升T型微混合器之混合品質.............................27
3.3 參數對注入式微混合器的影響..............................30
3.3.1 噴嘴尺寸對於混合效率的影響...........................30
3.3.2 混合室寬度對於混合效率的影響.......................31
3.3.3 入口流量對應混合所需時間...............................32
第四章 結論.........................................................34
參考文獻............................................................36
參考文獻 Branebjerg J., Gravesen P., Krog J. P., and Nielsen C. R., “Fast mixing by lamination,” Proc. MEMS’96, 9th IEEE Int. Workshop Micro Electro- mechanical System (San Diego, CA) 441–446.
Chang C. C. and Yang R.J., “Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks,” J. Micromech. Microeng., 14 (2004) 550–558.
Elwenspoek M., Lammerink T. S. J., Miyake R., and Fluitman J. H. J., “Towards integrated microliquid handing systems,” J. Micromech. Microeng., 4 (1994) 227–245.
Engler M., Kockmann N., Kiefer T., and Woias P., “Numerical and experimental investigations on liquid mixing in static micromixers,” Chemical Engineering Journal, 101 (2004) 315–322.
Gobby D., Angeli P., and Gavriilidis A., “Mixing characteristics of T-type microfluidic mixers,” J. Micromech. Microeng., 11 (2001) 126–132.
Holden M. A., Kumar S., Castellana E. T., Beskok A., and Cremer P. S., “Generating fixed concentration arrays in a microfluidic device,” Sensors and Actuators B, 92 (2003) 199–207.
Johnson T. J., Ross D., and Locascio L. E., “Rapid microfluidic mixing,” Anal. Chem., 74 (2002) 45-51.
Koch M., Chatelain D., Evans A. G. R., and Brunnschweiler A., “Two simple micromixers based on silicon,” J. Micromech. Microeng., 8 (1998) 123–126.
Liu R. H., Stremler M.A., Sharp K. V., Olsen M. G., Santiago J. G., Adrian R. J., Aref H., and Beebe D. J., “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Sys., 9 (2000) 190-197.
Liu Y. Z., Kim B. J., and Sung H. J. “Two-fluid mixing in a microchannel,” Int. J. Heat Fluid Flow, 25 (2004) 986–995.
Miyake R., Lammerink T. S. J., Elwenspoek M., and Fluitman J. H. J., “Micro mixer with fast diffusion,” Proc. MEMS’93, 6th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA) (1993) pp 248-53.
Nguyen N. T. and Wu Z. “Micromixers -- a review,” J. Micromech. Microeng., 15 (2005) R1–R16.
Oddy. M. H., Santiago J. G., and Mikkelsen J. C., “Electrokinetic instability micromixing,” Anal. Chem. 73 (2001) 5822–5832.
Tae G. K. and Tai H. K., “Colored particle tracking method for mixing analysis of chaotic micromixers,” J. Micromech. Microeng., 14 (2004) 891–899.
Voldman J., Gray M. L., and Schmidt M. A., “An Integrated Liquid Mixer/Valve,” J. Microelectromech. Sys., vol. 9, no. 3, September (2000)
Wong S. H., Bryant P., Michael W., and Wharton C., “Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies,” Sensors and Actuators B, 95 (2003) 414–424
Wong S. H., Ward M. C. L., and Wharton C. W., “Micro T-mixer as a rapid mixing micromixer,” Sensors and Actuators B, 100 (2004) 359–379.
Wu Z., Nguyen N. T., and Huang X., “Nonlinear diffusive mixing in microchannels: theory and experiments,” J. Micromech. Microeng., 14 (2004) 604–611.
Yang Z., Matsumoto S., Goto H., Matsumoto M., and Maeda R., “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators A, 93 (2001) 266-272.
Yang R., Williams J. D., and Wang W., “A rapid micro-mixer-reactor based on arrays of spatially impinging micro-jets,” J. Micromech. Microeng., 14 (2004) 1345-1351.
指導教授 吳俊諆(Jun-Chi Wu) 審核日期 2005-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明