博碩士論文 92323080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.234.51.17
姓名 周乘雨(Cheng-Yu Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 剪力流中液體含量對混合機制的影響
(Mxing mecanism in adherent shear flow)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文使用實驗方法,針對不同液體含量對粒子在剪力槽內之混合現象所造成之影響作探討。藉由改變液體含量來觀察顆粒體隨時間混合之過程,分析其混合層區域厚度 (Mixing Layer Thickness)、粒子擴散係數 (Particle Diffusion Coefficient)、混合區域內濃度分佈以及實驗數據與半理論模擬數據的比較,進而研究液體含量對混合層厚度的關係。在本文中,視擴散係數Dapp是一個重要的參數,代表流場混合快慢的指標,而這個參數也與液體含量、平均粒子溫度與剪率做比較,觀察其趨勢的變化。本實驗發現隨著液體含量的增加,平均速度、變動速度、視擴散係數與平均粒子溫度以及剪率都是下降的趨勢,說明了粒子間隨著液體含量的增加,其內聚力亦會增加,對其混合機制有減弱的影響。
摘要(英) The mixing and transport properties are influenced seriously by the amount of moisture added in the flow. If the particles are wet, the flow becomes more viscous and the liquid bridges and formed between particles. The dynamic liquid bridge forces are considered as the cohesive forces between particles to restrict the movements of particles. The cohesive forces make the particles stick tighter with each other and hamper the movement of particles. This paper discusses a series of experiments performed in a shear cell device with six different moisture contents and using 2-mm glass spheres as the granular materials. The motions of granular materials were recorded by a high-speed camera. Using the image processing technology and particle tracking method, the velocity, fluctuations and the granular temperatures were measured. The self-diffusion coefficient could be found from the history of the particle displacements. The mixing layer thicknesses were compared with the calculations from a simple diffusion equation using the data of self-diffusion coefficients obtained from the current measurements. The calculations and experimental results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.
關鍵字(中) ★ 顆粒流
★ 剪力槽
★ 粒子自我擴散係數
★ 混合
關鍵字(英) ★ Granular flow
★ Shear cell
★ Mixing
★ Diffusion
論文目次 摘 要 I
Abstract ..II
附表目錄 ..VI
附圖目錄 .VII
符號說明 ..X
第一章 簡介 1
1.1 粒子流簡介 1
1.2 剪力粒子流的研究歷史 ..3
1.3 混合現象 ..7
1.4 液橋現象 10
1.4.1 液橋力 (Liquid bridge forces) 10
1.4.2 毛細力 (Capillary forces) 12
1.4.3 黏滯力 (Viscous forces) 13
1.5 研究方向與架構 .13
第二章 實驗方法與原理 .......15
2.1 實驗設備 .15
2.1.1 剪力槽裝置 15
2.1.2 液體含量定義 ..17
2.1.3 顆粒體 ..19
2.1.4 觀測及量測儀器 ..19
2.2 實驗原理與方法 ..21
2.2.1 影像處理與混合層厚度分析方法 ..22
2.2.2 速度及擴散係數分析方法 ..24
2.3 平均速度與變動速度的量測方法 ..25
2.3.1 Correlation簡介 25
2.3.2 Correlation程式流程 26
2.4 粒子溫度之概念 ..29
2.5 自我擴散理論 ..30
2.5.1 混合層內的擴散方程式 ..32
2.6 實驗步驟 ..34
2.6.1 混合層厚度的量測 ..34
2.6.2 速度及擴散係數的量測 ..36
2.7 誤差校正 (Calibration) ..38
2.7.1 誤差來源 ..38
2.7.2 誤差校正 ..39
第三章 結果與討論 ..41
3.1 平均速度與變動速度 ..41
3.2 混合層隨時間變化關係圖 ..45
3.3 混合層內濃度之理論分析與計算 ..48
3.4 擴散係數的量測實驗 ..49
3.5 混合層內之混合速率 ..51
3.6 粒子溫度 ..52
3.7 混合層隨時間變化之實驗數據與理論計算之比較 ..54
第四章 結論 ..56
參考文獻 ..58
參考文獻 1. Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
2. Zik, L. and Stavans, J., 1991, “Self-Diffusion in Granular Flow,” Europhys. Lett., Vol. 16, pp. 255-258.
3. Wang, D. G. and Campbell, C. S., 1992, “Reynolds Analogy for a Shearing Granular Msterials,” J. Fluid Mech., Vol. 244, pp. 527-546.
4. Campbell, C. S. and Brennen, C. E., 1985, “Computer Simulation of Granular Shear Flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
5. Halsey, T .C. and Levine, A. J., 1998, “How Sandcastles Fall,” Phys. Rev. Lett., Vol. 80, pp. 3141-3144.
6. Mason, T. G., Levine, A. J., Ertas, D., Halsey T. C., 1999, “Critical Angle of Wet Sandpiles,” Phys. Rev. E., Vol. 60, p. 5044.
7. Campbell, C. S., 1989, “The Stress Tensor for Simple Shear Flow of a Granular Material,” J. Fluid Mech., Vol. 203, pp. 449-473.
8. Hvorslev, M. J., 1936, “A Ring Shearing Apparatus for the Determination of the Shearing Resistance and Plastic Flow of Soil,” In Proc. Intl. Conf. Soil Mech. Found. Eng., Cambridge, Mass., Vol. 2, pp. 125-129.
9. Hvorslev, M. J., 1939, “Torsion Shear Tests and Their Place in the Determination of Shearing Resistance of Soils,” Proc. ASTM, Vol. 39, pp. 999-1022.
10. Novosad, J., 1964, “Apparatus for Measuring the Dynamic Angles of Internal Friction and External Friction of a Granular Material,” Collection Czech. Chem. Commun., Vol. 29, pp. 2697-2701.
11. Scarlett, B. and Todd, A. C., 1968, “A Split Ring Annular Shear Cell for Determination of the Shear Strength of a Powder,” Sci. Instr., Vol. 1, pp. 655-656.
12. Scarlett, B. and Todd, A. C., 1969, “The Critical Porosity of Free Flowing Solids,” Trans. ASME B: J. Eng. Ind., Vol. 91, pp. 478-488.
13. Mandl, G., De Jong, L. N. J. and Maltha, A., 1977, “Shear Zones in Granular Material,” Rock Mech., Vol. 9, pp. 95-144.
14. Stephens, D. J. and Bridgwater, J., 1978, “The Mixing and Segregation of Cohesionless Particulate Materials. Part I. Failure Zone Formation,” Powder Technol., Vol. 21, pp. 17-28.
15. Stephens, D. J. and Bridgwater, J., 1978, “The Mixing and Segregation of Cohesionless Particulate Materials. Part II. Microscopic Mechanisms for Particles Differing in Size,” Powder Technol., Vol. 21, pp. 29-44.
16. Hsiau, S. S. and Hunt, M. L., 1993, “Kinetic Theory Analysis of Flow-Induced Particle Diffusion and Thermal Conduction in Granular Material Flows,” J. Heat Transfer, Vol. 115, pp. 541-548.
17. Savage S. B. and Sayed, M., 1984, “Stresses Developed by Dry Cohesionless Granular Materials Sheared in an Annular Shear Cell,” J. Fluid Mech., Vol. 142, pp. 391-430.
18. Lun, C. K. K. and Bent, A. A., 1994, “Numerical Simulation of Inelastic Frictional Spheres in Simple Shear Flow,” J. Fluid Mech., Vol. 233, pp. 539-559.
19. Lun, C. K. K., 1996, “Granular Dynamics of Inelastic in Couette Flow” Phys. Fluids, Vol. 8, pp. 2868-2883.
20. Hsiau, S. S. and Yang, W. L., 2002, “Stress and Transport Phenomena in Sheard Granular Flows with Different Wall Condition,” Phys. Fluids, Vol. 14, No.2, pp. 612-621.
21. Savage, S. B. and Mckeown, S., 1983, “Shear Stress Developed during Rapid Shear of Dense Concentrations of Large Spherical Particles between Concentric Cylinders,” J. Fluid Mech., Vol. 127, pp. 453-472.
22. Venables, H. J. and Wells, J. I., 2001, “Powder Mixing,” Drug Development and Industrial Pharmacy, Vol. 27, No. 7, pp. 599-612.
23. Gotoh, k., Musuda, H. and Higashitani, K., 1997, Powder Technology Handbook.(Marcel Dekker, New York)
24. Rhodes, M., 1998, Introduction to Particle Technology. (John Wiley & Sons, London).
25. Akiyama, T., Iguchi, T., Aoki, K., Nishimoto, K., 1998, “A Fractal Analysis of Solids Mixing in Two-Dimensional Vibrating Particles Beds,” Powder Technol., Vol. 97, pp. 63-71.
26. Khakhar, D. V., McCarthy, J. J., Shinbrot, T., Ottino, J. M., 1997, “Transvers Flow and Missing of Granular Materials in a Rotating Cylinder,” Phys. Fluids, Vol. 9, No. 1, pp. 31-43.
27. Elperin, T., and Vikhansky, A., 1998, “Kinematics of the Mixing of Granular Materials in Slowly Rotating Containers,” Europhys. Lett., pp. 17-22.
28. Staniforth, J. N. and Rees, J. E., 1982, “Electrostatics Charge Interactions in Ordered Powder Mixes,” J. Pharmacy and Pharmacology, Vol. 34, pp. 69-76.
29. Henrique, C., Batrouni, G. and Bideau, D., 2000, “Diffusion as a Mixing Mechanism in Granular Materials,” Phys. Rev. E., Vol. 63, No.1, pp. 1304-1311.
30. McCarthy, J. J., Khakhar, D. V. and Ottino, J. M., 2000, “Computational Studies of Granular Mixing,” Powder Technol., Vol. 109, pp. 72-82.
31. Nase, S. T., Vargas, W. L., Abatan, A. A., McCarthy, J. J., 2001, “Discrete Characterization Tools for Cohesive Granular Material,” Powder Technol., Vol. 116, pp. 214-223.
32. Jain, K. and McCarthy, J. J., 2002, “Discrete Characterization of Cohesion in Gas-Solid Flows,” Proceedings of IMECE2002, IMECE2002-32491
33. McCarthy, J. J., 2003, “Micro-Modeling of Cohesive Mixing Processes,” Powder Technol., Vol. 138, pp. 63-67.
34. Johanson, K., Rabinovicha, Y., Moudgilb, B., Breeceb, K., Taylor, H., 2003, “Relationship Between Particle Scale Capillary Forces and Bulk Unconfined Yield Strength,” Powder Technol., Vol. 138, pp. 13-17.
35. Jain, K., Shi, D. and McCarthy, J. J., 2004, “Discrete Characterization of Cohesion in Gas-Solid Flows,” Powder Technol., Vol. 146, pp. 160-167.
36. Kohonen, M. M., Geromichalosb, D., Scheelb, D., Schierb, C., Herminghausb, S., 2004, “Oncapillary Bridges in Wet Granular Materials,” Phys. A., Vol. 339, pp. 7-15.
37. Simons, S. J. R., Fairbrother, R. J., 2000, “Direct Observations of Liquid Binder-Particle Interactions: the Role of Wetting Behaviour in Agglomerate Growth,” Powder Technol., Vol. 110, pp. 44-58.
38. Hsiau, S. S. and Yang, S. C., 2003, “Numerical Simulation of Self-Diffusion and Mixing in a Vibrated Granular Bed with the Cohesive Effect of Liquid Bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-352.
39. Fisher, R. A., 1926, “On the Capillary Forces in an Ideal Soil,” J. Agric. Sci., Vol. 16, pp. 492-505.
40. Lian, G., Adams, M. J. and Thornton, C., 1993, “A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies,” J. Colloid Interface Sci., Vol. 161, pp. 138-147.
41. Savage, S. B., 1992, “Disorder, Diffusion and Structure Formation in Granular Flows,” in Disorder and Granular Media, D. Bideau, ed., Elsevier Science Publishers, Amsterdam, pp. 225-285.
42. Hsiau, S. S. and Hunt, M. L., 1993, “Shear-Induced Particle Diffusion and Logitndinal Velocity Fluctuations in a Granular-Flow Mixing Layer,” J. Fluid Mech., Vol. 251, pp. 299-313.
43. Savage, S. B. and Dai, R., 1993, “Studies of Shear Flows. Wall Slip Velocity, ‘Layering’ and Self-Diffusion,” Mech. Materials, Vol. 16, pp. 225-238, Elsevier.
44. Einstein, A., 1956, “Investigations on the Theory of the Brownian Movement,” (ed. R. Furth) Dover Publications Inc.
45. Campbell, C. S. and Brennen, C. E., 1985, “Chute Flows of Granular Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52, pp. 172-178.
46. Yang, W. L. and Hsiau, S. S., 2005, “Wet Granular Materials in Sheared Flows,” accepted for publication in chem. eng. sci.
47. Zhang, Y., Campbell, C. S., 1992, “The Interface between Fluid-Like and Solid-Like Behaviour in Two-Dimensional Granular Flows,” J. Fluid Mech., Vol. 237, p. 541.
48. Henrique, C., Batrouni, G. and Bideau, D., 2000, “Diffusion as a Mixing Mechanism in Granular Materials,” Phys. Rev. E., Vol. 63, No. 1, pp. 1304-1312.
49. Lun, C. K. K., 1991, “Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres,” J. Fluid Mech., Vol. 258, pp. 335-353.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2005-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明