博碩士論文 92323124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.228.220.31
姓名 黃瑞松(Rui-Song Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 變頻式超音波測距之可行性研究
(Feasibility study of switch frequency method for distance measurement by ultrasound)
相關論文
★ 大學太空酬載計畫實作管理方法研究★ 微電鍍控制系統之開發
★ 異波速媒體測距系統的開發★ 電極引導微電鍍系統之開發
★ 異波速媒體相位差測距系統之開發★ 橢圓幾何參數鑑別之理論模擬及實作
★ 多極式陽極引導微電鍍系統★ 雙頻超音波測距研究
★ 3D陽極引導微電鍍系統開發★ 氧敏感光波光電倍增管敏感度校正平台開發 I
★ 地面物體搜索用無線網路的開發★ 自動地面車輛用之可堆疊串接電源系統
★ 衛星姿態控制硬體在迴路測試用之磁場模擬艙★ 相容AX25KISS通訊協定之無線通訊系統開發
★ 光束擾動之自適應控制研究★ PC-Based介面電路診斷測試之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究提出創新之變頻式超音波測距法,以改良超音波測距法的準確性。此一新法是由雙頻式測距法改良而來。將原本為兩次分別獨立發送之雙頻超音波,改為串接式發射。我們透過系統模擬之實驗驗證新方法的可行性及其特性之探討,如此可以得到與雙頻法相近之量測精準度,進而有效地提升量測速度,同時也得到更好的雜訊免疫力。
經由模擬實驗之結果,變頻式量測法應採用的最佳聲波頻率範圍為39~41kHz,最佳之第二頻發送延遲時間應與前後兩頻之波群延遲時間差相等。若使用最佳化參數進行模擬,在最大4.5m之量測範圍內,最大之量測誤差在0.03um以下。藉由選擇適當的第二頻發送延遲時間,可以降低變頻時系統瞬態響應之影響,並且不需經由線性迴歸修正,就可以使理論量測誤差降低到微米等級。
本論文研究亦根據新量測法之計算結構進行了軟硬體實體測試系統之規劃與設計。然而其功能的實踐尚待後繼者之努力。
摘要(英) A frequency switching method was proposed to improve, further than the dual frequencies method, the accuracy of the distance measurement by ultrasound. By the latter, wave packet of two different frequencies were transmitted separately and were compared at the receiver to identify the delay time for compensation, while the new method switches the ultrasound from one frequency to the other in sequence with a predetermined gap time and thus fixed correlations. The feasibility of the new method was verified through system simulation that both methods yielded similar accuracy, yet the new method required shorter measurement time and had better noise immunity.
Optimal parameters for the new methods were also found through simulation studies that the frequency should range from 39 to 41 KHz, the gap time between of the frequency switch should equal to the difference of the group delays at the two frequencies. With total distance under 4.5m the maximum measurement error was below 0.03um. Properly adjusting the gap time of frequency switch, transient effects of the frequency switch could be minimized such that the theoretical measurement error could be reduced to nanometers.
The hardware and software system architectural design was carried out in an attempt to realize a physical prototype of the new measurement technology. The physical implementation awaits to be done by successors.
關鍵字(中) ★ 超音波
★ 變頻
★ 測距
★ 飛行時間
關鍵字(英) ★ ultrasound
★ distance measurement
★ time of flight
★ switch frequency
論文目次 論文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第1章 序論 1
1.1 測距的需求 1
1.2 現有超音波測距法之探討 1
1.3 本文之改良 4
1.4 本文架構 6
第2章 超音波測距之理論基礎 7
2.1 超音波測距系統之動態模型 7
2.1.1 超音波轉能器之特性 8
2.1.2 超音波在空氣中的傳遞 10
2.1.3 比較器的影響 11
2.1.4 接收到的訊號 12
2.2 雙頻式修正法 14
2.3 變頻式修正法 19
第3章 電腦分析模型 23
3.1 系統方塊圖 23
3.2 模擬參數 24
3.2.1 超音波致能器 24
3.2.2 超音波感測器 26
3.2.3 飛行時間的模擬 27
3.2.4 能量衰減 27
3.2.5 放大增益 29
3.2.6 比較器門檻值 29
3.3 演算法 30
3.4 模擬流程 30
3.5 結果與分析 31
3.5.1 性能模擬 31
3.5.2 雜訊的影響 33
3.5.3 Tadj的影響 34
3.5.4 頻率選擇的影響 35
3.5.5 發送脈波數目的影響 37
3.5.6 震盪時脈變動的影響 38
第4章 系統設計 40
4.1 系統架構 40
4.2 電路設計 42
4.2.1 超音波訊號濾波放大器 43
4.2.2 超音波驅動電路 46
4.2.3 紅外線收發器 47
4.2.4 參考訊號到達時間記錄器 48
4.2.5 參考訊號產生器 50
4.2.6 紅外線通訊模組 54
4.2.7 RS-232通訊母板 55
4.3 軟體設計 55
4.3.1 通訊協定 56
4.3.2 量測流程控制 58
4.3.3 使用介面 60
第5章 結論 61
參考資料 62
附錄 64
參考文獻 [1] C. F. Huang, M. S. Young, and Y. C. Lin, “Multiple-Frequency Continuous Wave Ultrasonic for Accuracy Distance Measurement”, Review of Scientific Instruments, Volume 70, Number 2, February 1999
[2] M. Yang, S. L. Hill, B. Bury, and J. O. Gray, “A Multifrequency AM-based Ultrasonic System for Accuracy Distance Measurement”, IEEE Transactions on Instrumentation and Measurement, VOL. 43, NO. 6, December 1994
[3] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors”, IEEE Transactions on Instrumentation and Measurement, VOL. 41, NO. 1, February 1992
[4] M. Parrila, J. J. Anaya, and C. Fritsch, “Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements”, IEEE Transactions on Instrumentation and Measurement, VOL.40, NO.4, August 1991
[5] K. Nakahira, D. Kodama, S. Morita, and S. Okuma, “Distance Measurement by an Ultrasonic System Based on a Digital Polarity Correlator”, IEEE Transactions on Instrumentation and Measurement, VOL. 50, NO. 6, December 2001
[6] G. Andria, F. Attivissimo, and N. Giaquinto, “Digital signal processing techniques for accurate ultrasonic sensor measurement”, Measurement, Vol. 30, September 2001, pp105-114
[7] D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing,” IEEE Transactions on Instrumentation and Measurement, Vol.43, Iss.4, Aug 1994, Pages:578-582
[8] C. Cai and Paul P. L. Regtien, “Accurate Distance time-of-flight Measurement using self-interference”, IEEE Transactions on Instrumentation and Measurement, VOL. 42, NO. 6, December 1993
[9] Jiang, et al., “Measuring system and method for detecting object distance by transmitted media with different wave velocities”, U.S. Patent NO.6,680,688
[10] 孫清華,感測器應用電路的設計與製作,初版。全華,台北市,民81。
[11] 王迺愨,應用電子學I,未出版手稿,國立中央大學光電科學研究所,2003。
[12] 普崴電子公司,網址:http://www.prowave.com.tw/
[13] A. P. Cracknell, “Ultrasonics.” London: Wykeham, 1982, chap.3
[14] 陳凱志(民93),雙頻超音波測距研究,國立中央大學機械工程研究所碩士論文,未出版,台灣桃園。
[15] “Choosing an Ultrasonic Sensor for Proximity or Distance Measurement,” 網址:http://www.sensorsmag.com/articles/0299/acou0299/main.shtml
[16] “VISHEY,” 網址:http://www.vishay.com/ir-transceivers/
[17] “OPENCORES.ORG,” 網址:http://www.opencores.org/
[18] “Infrared Data Association”, 網址:http://www.irda.org/
指導教授 葉則亮(Tse-Liang Yeh) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明