博碩士論文 92324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.145.58.169
姓名 蘇皇維(Huamg-Wei Su)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電遷移對銅原子在熔融錫鉛銲料中擴散行為之影響
(The diffusion of Cu in the molten eutectic Sn-pb solder with electromigration)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 覆晶封裝中電遷移效應導致之銅溶解現象
★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料★ 覆晶接點與錫電路之電遷移微結構變化模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗主要利用Cu∕Molten SnPb∕Cu的反應偶進行通電,探討在兩端為銅導線的熔融銲料中,電子流推動銅原子的能力,藉以了解銅原子於液態銲料中受電子流影響而加速擴散之行為。
實驗條件主要可分為液態反應與固態反應:「液態反應」中設定溫度為230 ℃,對『銅∕液態銲料∕銅』的系統分別進行通電與熱處理反應,以得到不同反應時間的結果。另一方面,「固態反應」則設定溫度為160 ℃,對『銅∕固態銲料∕銅』的系統中分別進行通電與熱處理反應,其中通電電流密度皆為7.2 x 103 A/cm2。而藉由觀察通電下陰極與陽極端介金屬生成與銅消耗的情形來比較其中的差異性。
實驗結果發現,在Cu∕Molten SnPb∕Cu系統中通電時,陰極端導線會有大量銅消耗,而陽極端則有大量介金屬的情形,顯示電子流的流動下會使陰極端銅導線快速溶解與消耗,並推擠銅原子加速擴散到陽極端,而生成大量介金屬Cu6Sn5,其現象與「不通電液態銲料反應」及「固態銲料下通電」的結果差距甚大,其銅導線消耗之厚度差距可達10倍之多。而這個結果也說明了:在『銅∕銲料∕銅』的反應中,當銲料是處於液態並給予一電流時,電子流會加速陰極端銅導線的溶解與擴散,進而導致大量的銅消耗。
另外,在160 ℃的固態通電實驗中,在陽極端會有鉛相聚集的行為,乃是因為在此溫度下Pb原子的移動會較Sn原子來地快。同時也發現到陽極端介金屬厚度較陰極端要來的厚,推論同樣是電子流導致陰極端銅原子擴散的原因,不過在固態下此銅遷移的現象和先前液態通電相比,有極端的差異性存在。
摘要(英) In this study, we used the『Cu / Molten SnPb / Cu』structure to investigate the polarity effect of electromigration. By the result, we found that electronic current will accelerate the diffusion behavior of Cu in molten solder severely.
The experiment condition was including two parts, which was “liquid-state reaction” and “solid-state reaction”. In liquid-state reaction, the sample was annealed at 230 °C with and without current stressing. In solid reaction, the sample was annealed at 160 °C with and without current stressing. Here the current density was 7.2 x 103 A/cm2. By the observation of the result, we compared the polarity effect of electromigration on the thickness of intermetallic compound (IMC) formation and the dissolution of Cu at the cathode and the anode site.
In the Cu / molten SnPb / Cu system of electromigration, the rapid dissolution of Cu at the cathode site and the plenty formation of IMC at the anode site was found obviously. It was concluded that Cu atoms were dissolved quickly into the molten solder, and the dissolved Cu atoms were driven to the anode side by electronic current immediately.
In addition, we reduced the experiment temperature to 160 °C and take the solid sample under current stressing. Electromigration indeed affects the formation of IMC at the anode and the cathode site. It enhances the growth of IMC at the anode side and inhibits the growth at the cathode side when compared with the no-current case. As the time of current stressing increased, the propagation of Pb-rich phase was found at the anode side. This is because Pb is the dominant diffusing species at temperatures above 120 °C.
關鍵字(中) ★ 液態銲料
★ 銅
★ 電遷移
★ 擴散
關鍵字(英) ★ diffusion
★ molten solder
★ Electromigration
★ Cu
論文目次 目錄
中文摘要...................................................Ⅰ
英文摘要...................................................Ⅱ
目 錄......................................................Ⅲ
圖 目 錄...................................................Ⅴ
表 目 錄...................................................Ⅶ
第 一 章 緒論
1.1 微電子構裝技術......................................... 1
1.2 研究動機............................................... 5
第 二 章 文獻回顧
2.1 電遷移之動力學通式..................................... 6
2.2 早期導線端之電遷移的研究............................... 9
2.3 銲料中的電遷移現象..................................... 12
2.3.1 薄膜合金銲料(Solder stripe)之電遷移研究............ 12
2.3.2 V 型銲料線路(Solder line)之電遷移研究............. 13
2.3.3 覆晶銲點(Flip chip)之電遷移研究.................... 15
(一) 共晶SnPb與無鉛SnAgCu銲點之電遷移現象.................. 15
(二) 覆晶銲點之電流聚集(Current crowding)效應.............18
(三) 97Pb/3Sn & 37Pb/63Sn 複合凸塊之電遷移現象 .......... 21
2.3.4 電遷移導致快速Cu溶解之失效機制...................... 23
2.4 鋁導線與銲料電遷移發生的臨界電流密度差異............... 25
2.5 電遷移對界面反應的影響................................. 27
第 三 章 實驗方法與步驟
3.1 實驗試片的製作......................................... 29
3.1.1 銅導線的前處理....................................... 29
3.1.2 微量毛細管內銲料的填入............................... 30
3.1.3 銅導線與銲料的接合................................... 30
3.2 加熱通電實驗裝置....................................... 33
3.3 試片之處理、觀察及分析................................. 36
第 四 章 實驗結果與討論(Ⅰ)
-熔融SnPb銲料與銅通電與未通電之反應-
4.1 熔融SnPb銲料與銅的通電現象............................. 39
4.1.1不同通電時間下試片型態之變化.......................... 39
4.1.2 陰極與陽極端銅的消耗量............................... 43
4.2 不通電下熔融SnPb與Cu的界面反應......................... 45
4.2.1不同反應時間下試片型態之變化.......................... 45
4.2.2 銅導線的消耗量....................................... 49
4.3 液態通電與液態熱處理之比較與討論....................... 51
第 五 章 實驗結果與討論(Ⅱ)
-固態SnPb銲料與銅通電與未通電之反應-
5.1 固態SnPb銲料與銅的通電現象............................. 57
5.2 固態通電與固態熱處理界面端介金屬生長的比較............. 63
5.3 固態與液態銲料通電反應之比較........................... 68
第 六 章 結論 ............................................ 72
參考文獻................................................... 74
參考文獻 參考文獻
1.Y. H. Lin, C. M. Tsai, Y. C. Hu, Y.L. Lin, C. R. Kao, J. Electron. Mater., 34 (1), 27-33, (2005).
2.Y. C. Hu, Y. H. Lin, C. R. Kao, K.N. Tu, J. Mater. Res., 18 (11), 2544- 2548, (2003).
3.陳信文、陳立軒、林永森、陳志銘著『電子構裝技術與材料』
4.E. M. Davis, W. E. Harding, R. S. Schwartz, and J. J. Corning, IBM J. Res. Develop., 8, 102, (1964).
5.D. P. Seraphim, R. C. Lasky, and C-Y. Li, “Principle of Electronic Package ”, McGraw-Hill, New York, (1993).
6.J. H. Lau, “Flip Chip Technologies ”, McGraw-Hill, New York, (1996).
7.J. H. Lau, “Low cost flip chip technologies: for DCA, WLCSP, and PBGA assemblies ”, McGraw-Hill, New York, (2002).
8.P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J. Sheaffer, in “Electronics Packaging Handbook ” edited by R.R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Chapman New York, (1999).
9.http://www.amkor.com/enablingtechnologies/FlipChip/
10.The International Roadmap for semiconductor Technology, Semiconductor Industry Association : 2003 edition
11.The International Roadmap for semiconductor Technology, Semiconductor Industry Association : 2004 update
12.V. B. Fiks, Sov. phys., Solid state., 1, 14-28, (1959).
13.H. B. Huntington, and A. R. Grone, J. Phys. Chem. Solids, 20, 76-87, (1961).
14.K. N. Tu, J. W. Mayer, and L. C. Feldman, Pearson Education POD, 355, (1996).
15.K. N. Tu, Physical Review B, 45, 3, 1409, (1992)
16.I. A. Blech, J. Appl. Phys., 47, 1203, (1976).
17.I. A. Blech, and C. Herring, Appl. Phys. Lett., 29, 131, (1976).
18.H. B. Huntington, in “Diffusion in Solids: Recent Developments ”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 303-352, (1975).
19.J. R. Black, IEEE Trans. On Electron Devices, ED-16, 348, 1969.
20.K. N. Tu, J. Appl. Phys., 94, 1, (2003).
21.F. M. d”Heurle, and P. S. Ho, “Electromigration in thin films,” in “Thin film; Interdiffusion and reactions,” (p. 243), edited by J. M. Poate, K. N. Tu, and J. W. Mayer, Wiley-Interscience, New York (1978).
22.C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett., 75, 58, (1999).
23.C. Y. Liu, Chin Chen, and K. N. Tu, J. Appl. Phys., 88, 5703, (2000).
24.Jae-Young Choi, Sang-Su Lee, and Young-Chang Joo, Jpn. Appl. Phys., 41, 7487, (2002).
25.Jae-Young Choi, Sang-Su Lee, Jong-Min Paik, and Young-Chang Joo, IEEE Electronic Materials and Packaging, 417-420, (2001).
26.Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 89, 4332, (2001).
27.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, 6, 34, (2002).
28.T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys., 89, 3189, (2001).
29.T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys., 89, 4502, (2001).
30.Ying-Chao Hsu, Tung-Liang Shao, Ching-Jung Yang, and Chin Chen, J. Electron. Mater., 32 (11), 1222, (2003).
31.W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys., 94, 5665, (2002).
32.E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett., 80, 580, (2002).
33.J. W. Nah, and K. W. Paik, J. Appl. Phys., 94, 7560, (2003).
34.Jae-Woong Nah, Jong Hoon Kim, Hyuck Mo Lee, Kyung-Wook Paik, Acta Materialia, 52, 129, (2004).
35.Yeh-Hsiu Liu and Kwang-Lung Lin, Damages and Microstructural Variation of 5Sn-95Pb Flip Chip Solder Bumps Induced by Electromigration, unpublished, (2005).
36.W. C. Liu, S. W. Chen, and C. M. Chen, J. Electron. Mater., 27 (1), L5-L8, (1998).
37.S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron. Mater., 27 (11), 1193, (1998).
38.C. M. Chen, and S. W. Chen, J. Electron. Mater., 28 (7), 902, (1999).
39.C. M. Chen, and S. W. Chen, J. Electron. Mater., 29 (10), 1222, (2000).
40.C. M. Chen, and S. W. Chen, J. Appl. Phys., 90, 1208, (2001).
41.C. M. Chen, and S. W. Chen, Acta Materialia, 50 (9), 2461, (2002).
42.S. W. Chen, and C. M. Chen, JOM, 55, 62, (2003).
43.C. M. Chen, and S. W. Chen, J. Mater. Res., 18 (6), 1293, (2003).
44.M. Y. Du, C. M. Chen, and S. W. Chen, Mater. chem. Phys., 82 (3), 818, (2003).
45.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, 6, 34, (2002).
46.H. Gan, and K. N. Tu, in Proceedings of 52nd Electronic Components and Technology Conference San Diego, CA, 1206, (2002).
47.H. Gan, G. Xu, and K. N. Tu, in Proceedings of 52nd Electronic Components and Technology Conference New Orleans, LA , 71, (2003).
48.H. Gan, and K. N. Tu, J. Appl. Phys., 97, 065514, (2005).
49.K. N. Tu, and K. Zeng, Materials Science and Engineering R, 34, 1-58, (2001).
50.K. H. Prakash, and T. Sritharan, Acta Materialia, 49, 2481, (2001).
51.H. K. Kim, and K. N. Tu, Phys. Rev. B, 53, 16027, (1996).
52.K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, J. Appl. Phys., 89, 4843, (2001).
53.H. K. Kim, H. K. Liou, and K. N. Tu, J. Mater. Res., 10, 497, (1995).
54.Matt Schaefer, Raymond A., Fournelle, and Jim liang, J. Electron. Mater., 27 (11), 1167, (1998)
55.H. K. Kim, H. K. Liou, and K. N. Tu, Appl. Phys. Lett., 66, 2337, (1995).
56.H. K. Kim, and K. N. Tu, Appl. Phys. Lett., 67, 2002, (1995).
57.K. N. Tu, and R. D. Thompson, Acta Metall., 30, 947, (1981).
58.Kejun Zeng, Roger Stierman, Tz-Cheng Chiu, Darvin Edwards Kazuaki Ano, and K. N. Tu, J. Appl. Phys., 97, 024508, (2005).
59.D. Gupta, K. Vieregge, and W. Gust, Acta Metall., 47, 5, (1999).
60.T. Y. Lee, W. J. Choi, and K. N. Tu, J. Mater. Res., 17, 291, (2002).
61.Y. S. Lai, and C. L. Kao, “Numerical Investigation of Current Crowding in Flip-chip Bumps”, IMAPS-Taiwan, (2004).
指導教授 高振宏(C. R. Kao) 審核日期 2005-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明