博碩士論文 92324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.144.35.148
姓名 余心印(Hsin-Yin Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
(Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究
★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以二氧化鈦為擔體,利用沈澱固著法製備成二氧化鈦擔載奈米金觸媒,目的在發展甲醇部分氧化反應(CH3OH + 1/2O2 → 2H2 + CO2)製備氫氣的程序,同時利用感應耦合電漿質譜分析儀(ICP-AES)、熱重分析儀(TGA)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)、X射線光電子分析儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。從TEM的分析結果發現,以沈澱固著法製備出的觸媒,金晶粒呈現半圓球型,以平的那一面吸附在擔體上。金顆粒的大小會因為製備過程不同而有所差異,當製備時的pH值為9到6時,Au大小為1.8 nm~3.9 nm。煅燒過後的觸媒Au顆粒也會增加,未煅燒時金顆粒為3.0 nm,在673 K下煅燒後,Au顆粒則為4.7 nm。由XPS的結果中發現,未煅燒過的觸媒中,Au以三種狀態存在,金屬態(Au0)、非金屬態(Auδ+)以及Au2O3,而在573K煅燒過的觸媒,則只有金屬態的金(Au0)存在。經過活性測試後發現,觸媒的活性與金顆粒的大小有絕對的關係,當金的顆粒越小時,氫氣選擇率越高;在pH=8製備的觸媒,未煅燒的Au/TiO2觸媒有最佳的氫氣選擇率。另外進料中氧與甲醇的比例也是影響反應的一個因素,當O2/CH3OH = 0.3時一氧化碳的產量達到極低,不到500 ppm,無法由GC偵測出來。當增加反應溫度時,甲醇轉化率與氫氣選擇率都會同時增加。反應路徑假設為由連續的甲醇部分氧化、甲醇直接分解與甲醇蒸汽重組反應構成。最後和文獻上的銅觸媒以及鈀觸媒催化結果做比較,Au/TiO2觸媒的催化活性較佳,且CO的產率極微小,但是氫氣選擇率比銅觸媒及鈀觸媒來的差,未來仍須進行改質,以期提升氫氣選擇率。
摘要(英) Selective production of hydrogen by partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) over Au/TiO2 catalysts, prepared by deposition-precipitation method was studied. The catalysts were characterized by ICP-AES, TGA, XRD, TEM, and XPS analyses. TEM observations show that the Au/TiO2 catalysts exhibit hemispherical gold particles, which are strongly attached to metal oxide support at their flat planes. The size of the gold particles decreases from 3.9 nm to 1.8 nm with the rise in pH during preparation of the catalysts 6 to 9 and increases from 3.0 nm to 4.7 nm with the rise in calcination temperature up to 673 K. XPS analyses demonstrate that in uncalcined catalysts gold existed in three different states i.e. metallic gold (Au0), non-metallic gold (Auδ+) and Au2O3 and in catalysts calcined at 573 K only in metallic state. The catalytic activity is strongly dependant on the gold particle size, with smaller particles produces higher hydrogen selectivity. The catalyst precipitated at pH 8 and uncalcined catalysts show highest activity for hydrogen generation. The partial pressure of oxygen plays an important role in determining the product distribution. There is no carbon monoxide detected, when the O2/CH3OH molar ratio in the feed is 0.3. Both hydrogen selectivity and methanol conversion increase with increasing the reaction temperature. The reaction pathway is suggested to consist of consecutive methanol partial oxidation, methanol decomposition, and methanol steam reforming.
關鍵字(中) ★ 氫氣
★ 甲醇部分氧化反應
★ 金觸媒
★ 二氧化鈦
關鍵字(英) ★ gold catalyst
★ titania support
★ partial oxidation of methanol
★ deposition-precipitation
★ hydrogen
論文目次 內容?????????????????頁數
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅴ
圖索引…………………………………………………………………Ⅸ
表索引………………………………………………………………ⅩⅢ
第一章 緒論…………………………………………………1
1.1 前言……………………………………………………………1
1.2 燃料電池原理…………………………………………………...1
1.3 燃料電池的種類………………………………………………...4
1.4 甲醇製氫………………………………………………………..6
1.5 金觸媒…………………………………………………………..7
1.6 研究內容與論文架構…………………………………………...8
第二章 文獻回顧…………………………………………….9
2.1 金的物性與化性 ……………………………………………...9
2.2 金觸媒的製備方法…………………………………………….10
2.3 煅燒程序……………………………………………………….15
2.4 擔體效應……………………………………………………….16
2.5 金的活性位置………………………………………………….17
2.6 金觸媒的應用………………………………………………….21
2.6-1 低溫一氧化碳氧化反應……………………………………21
2.6-2 有機揮發物質氧化反應……………………………………26
2.6-3 水氣轉移反應………………………………………………27
2.6-4 碳氫化合物選擇性氧化反應………………………………28
2.6-5 甲醇部分氧化反應…………………………………………28
第三章?篘蝷隤k與裝置…………………………..……….31
3.1 奈米金觸媒的製備…………………………………………….31
3.2 觸媒代號說明………………………………………………….33
3.3 奈米金觸媒的鑑定分析……………………………………….33
3.3-1 感應耦合電漿原子放射光譜儀(ICP-AES)分析……….34
3.3-2 觸媒總表面積、孔隙體積及孔徑大小分析……………….35
3.3-3 熱重分析(TGA)………………………………………….37
3.3-4 X射線繞射分析(XRD)………………………………….37
3.3-5 穿透式電子顯微鏡(TEM)……………………………….39
3.3-6 掃瞄式電子顯微鏡分析(SEM)…………………………41
3.3-7 X射線光電子分析(XPS)………………………………..43
3.4 觸媒活性測試—甲醇部分氧化反應………………………….44
3.5 實驗流程與操作變數………………………………………….49
3.6 數據的計算與實例…………………………………………….52
3.6-1 奈米金觸媒理論載量的定義與計算………………………52
3.6-2 轉化率的定義與計算………………………………………52
3.6-3 選擇率的定義與計算………………………………………57
3.7 藥品、氣體及儀器設備……………………………………….59
3.7-1 藥品…………………………………………………………59
3.7-2 氣體…………………………………………………………59
3.7-3 儀器設備……………………………………………………60
第四章?痕G與討論……………………………………...…62
4.1 物性分析……………………………………………………….62
4.1-1 操作變數對金屬載量的影響………………………………..62
4.1-2 煅燒條件的選擇……………………………………………63
4.1-3 觸媒表面積測定……………………………………………66
4.1-4 X射線繞射分析(XRD)…………………………………68
4.1-5 穿透式電子顯微鏡分析(TEM)…………………………70
4.1-6 掃瞄式電子顯微鏡(SEM)……………………………….76
4.1-7 X射線光電子分析(XPS)……………………………….80
4.2 化性分析……………………………………………………….82
4.2-1 金載量對觸媒活性的影響…………………………………82
4.2-2 煅燒溫度對觸媒活性的影響………………………………85
4.2-3 pH值對觸媒活性的影響…………………………………..89
4.2-4 進料比例對觸媒活性的影響………………………………90
4.2-5 反應溫度對觸媒活性的影響………………………………97
4.2-6 Au/TiO2觸媒與銅、鈀、鉑觸媒在甲醇部分氧化反應上之分析結果比較………………………………………………………..100
第五章?結論……………………………………………103
參考文獻……………………………………………………107
參考文獻 Agrell, J., Hasselbo, K., Jansson, K., Jaras, S.G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239 (2001).
Agrell, J., Germani, G., Jaras, S.G., Boutonnet, M., “Preduction of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 242, 233 (2003).
Arrii, S., Morfin, F., Renouprez, J., Rousset, J.L., “Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution”, Journal of the American Chemical Society, 126, 1199 (2004).
Andreeva, D., Tabakova, T., Ilieva, L., Naydenov, A., Mehanjiev, D., Abrashev, M.V., “Nanosize gold catalysts promotrd by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Applied Catalysis A: General, 209, 291 (2001).
Andreeva, D., Idakiev, V., Tabakova, T, Andreev, A., Giovanoli, R., “Low-temperature water-gas shift reaction over Au/α-Fe2O3”, Journal of Catalysis, 158, 354 (1996).
Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G. “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General , 162, 281 (1997).
Besson, M., Kallel, A., Gallezot, P., Zanella, R., “Gold catalysts supported on titanium oxide for catalytic wet air oxidation of succinic acid”, Catalysts Communications, 4, 471 (2003).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Lchikawa, S., Haruta, M., “Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation”, Journal of Catalysis, 202, 256 (2001).
Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M. “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation”, Catalysis Letters, 44, Iss 1-2, 83 (1997).
Bond, G.C., Gold Bull, 5, 11 (1972).
Chang, C.K., Yeh, C.T., Chen, Y.J., “Characterizations of alumina-supported gold with temperature-programmed reduction”, Applied Catalysts A: General, 174, 13 (1998).
Choudhary, T.V., Chusuei, C.C., Datye, A.K., Fackler, J.P., Goodman, D.W., “CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex”, Journal of Catalysis, 207, 247 (2002).
Claus, P., Bruckner, A., Mohr, C., Hofmeister, H., “Supported gold nanoparticles from quantum dot to mesoscopic size
scale: effect of electronic and structural properties on catalytic
hydrogenation of conjugated functional groups”, Journal of the American Chemical Society, 122, 11430 (2000).
Costello, C.K., Kung, M.C., Oh, H.-S., Wang, Y, Kung, H.H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Applied Catalysis A: General, 232, 159 (2002).
Cunningham, D.A.H., Kobayashi, T., Kamijo, N., Haruta, M., Catalysis Letters, 25, 257 (1994).
Cubeiro, M. L. and Fierro, J. L. G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General, 168, 307 (1998).
Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, 72, 89 (2002).
Dietz, W.A., “Response factors for gas chromatographic analyses”, Journal of GC February, 68 (1967).
Funasaki, N., Henmi, A., Ito, S., Asano, Y., Yamashita, S., Kobayashi, T., Haruta, M., Sensors and actuators B, 13-14, 536 (1993).
Galvagno, S. and Parravano, G., Journal of Catalysis, 55, 178 (1978).
Goodman, D.W., Valden, M., “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties”, Science, 281, 1647 (1998).
Grunwaldt, J.D., Baiker, A., “Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation”Journal of Physical Chemistry B, 103, 1002 (1999).
Gardner, S. D., Hoflund, G. B., Upchurch, B. T., Schryer, D. R., Kielen, E. J. and Schryer, J. “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, 129, Iss 1, 114 (1991).
Grisel, R.J.H., Kooyman, P.J., Nieuwenhuys, B.E., “Influence of the preparation of Au/Al2O3 on CH4 oxidation activity”, Journal of Catalysis, 191, 430 (2000).
Grisel, R.J.H., Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catalysis Today, 64, 69 (2001).
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Catalysis Letters, 405 (1987).
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., Journal of Catalysis, 115, 301 (1989).
Haruta, M., Hyomen, Surface, 28, 333 (1990).
Haruta, M., Tsubota, S., Kobayashi, T., Kagetama, H., Genet, M.J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175 (1993).
Haruta, M., Ueda, A., Tsubota, S., Torres Sanchez, R.M., “Low temperature catalytic combustion of methanol and its decomposed of methanol and its decomposed derivatives over supported gold catalysts”, Catalysis Today, 29, 443 (1996).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153 (1997).
Haruta ,M., Daté , M., ” Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General, 222, 427 (2001).
Hcyashi , T. and Haruta, M. “Effect of an loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37, 75 (1995).
Hohlein, B.J., Bogild, H., Brockerhoff, P., Colsman, G., Emonts, B., Menzer, R., Riedel, E., “Hydrogen from methanol for fuel-cells in mobile systems-development of a compact reformer”, Journal of Power Sources, 61, 143 (1996).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis A: General, 40, 43 (1988).
Hutchings, G.J., Gold Bull, 29, 123 (1996).
Idakiev, V., Tabakova, T., Yuan, Z.-Y., Su, B.-L., “Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction”, Applied Catalysis A: General, 270, 135 (2004).
Kumar, R., Ahmed, S., Krumplet, M., Myles, K.,M., Agron National Laboratory Report, ANL-92/31, Argone, IL, USA, (1992).
Lee, S.-J., Gavriilidis, A., Pankhurst, Q.A., Kyek, A., Wagner, F.E., Wong, P.C.L., Yeung, K.L., “Effect of drying conditions of Au-Mn co-precipitates for low-temperature CO oxidation”, Journal of Catalysis, 200, 298 (2001).
Lin, S.P, Bollinger, M., Vannice, M.A., Catalysts Letters, 17, 245 (1993).
Luengnaruemitchau, A., Osuwan, S., Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215 (2003).
Mavrikakis, M., Stoltze, P., Norskov, J.K., “Making gold less noble”, Catalysis Letters, 64, Iss 2-4, 101 (2000).
Macken, J.A., Yagnik, S.K., Samis, M.A., IEEEJ. Quantum Electrics, 25, 1695 (1991).
Maciejewski, M., Fabrizioli, P., Grunwaldt, J.D., Becker, O.S., Baiker, A., “Supported gold catalysts for CO oxidation: Effect of calcination on structure, adsorption and catalytic behaviour”, Physical Chemistry, 3, 3846 (2001).
Merck & Co., The Merck Index, (1996).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245 (2000).
Navarro, R.M., Pena, M.A., Fierro, J.L.G, “Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer”, Journal of Catalysis, 212, 112 (2002).
Okumura, M.T. and Haruta, M., “Hydrogenation of 1,3-butadiene and of crotonaldehyde over higher dispersed Au catalysts”, Catalysts Today, 74, 265 (2002).
Park, E.D., Lee, J .S., “Effects of pretreatment conditions on CO oxidation over supported Au catalysts”, Journal of Catalysis, 186, 1-11 (1999).
Park, S. H., Tzou, M. S., and Sachtler, M. H., Applied Catalysis A: General, 24, 85 (1986).
Traxel, B.E., Hohn, K.L, “Partial oxidation of methanol at millisecond contact times”, Applied Catalysis A: General, 244, 129 (2003).
Wolf ,A., Schüth. F., ” A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General , 226, 1 (2002).
Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123 (2003).
Wang, Z., Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151 (2003).
Yeh,C.T. and Chen, Y.J., “Deposition of higher dispersed gold on alumina support”, Journal of Catalysis, 200, 59 (2001).
Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R., Louis, C., “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea”, Journal of Catalysis, 222, 357 (2004).
陳永杰, 洪華聖, 葉君棣 “支撐性金觸媒在甲醇部分氧化反應上的應用”, 第十九屆觸媒與反應工程研討會 (2001).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2005-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明