博碩士論文 92324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.17.175.151
姓名 蔡經緯(Ching-Wei Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 低溶血高抗菌之Indolicidin類似胜肽的分子設計-以分子模擬與螢光測定為輔助工具
(Molecular Design of Less Hemolytic and Highly Antibacterial Indolicidin-Derived Peptides Assisted by Molecular Simulation and Fluorescence Analysis)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析
★ 烷烴氧化菌及氧化酵素之純化與功能性探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力
★ 葛蘭氏陰性菌脂質A之結構研究★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究
★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應
★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為
★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為★ 網頁圖形界面在分子模擬上的應用
★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Indolicidin (IL)為13個胺基酸組成且富含色胺酸之鹼性抗生胜肽,對於許多病原體具有良好的抗生活性,因此具有相當的潛力成為新一代的抗生藥物。可惜的是IL的溶血活性限制了它在臨床醫學的測試,故許多學者把研究的焦點放在如何有效地設計同時具有高抗菌活性且低溶血活性的IL類似物,但是都還未能得到具有這種潛力的IL類似胜肽,僅止於獲得抗菌能力與IL相同但溶血有大幅下降的IL類似胜肽。許多研究指出IL的生物活性與其和磷脂膜之間的交互作用有關,由於細菌與血球的磷脂膜組成不同,因此推測IL對於這兩種細胞膜的擾亂程度亦會有所不同;另一方面,也有學者提出IL胜肽會於水中形成聚集物,並且發現聚集物的形成與其溶血性息息相關。我們認為若能得知影響抗菌溶血關鍵之胺基酸,則可設計一條新的IL類似物,改善其溶血性並增加其抗菌性。因此本研究首先以全原子動態模擬 (all-atom molecular dynamics simulation) 探討IL分別和仿細菌細胞膜與仿血球細胞膜的作用過程中,影響磷脂膜擾亂的關鍵胺基酸。一方面以微觀分子尺度來了解IL與磷脂膜的交互作用機制;另一方面也可以準確地置換造成溶血的胺基酸與增加造成抗菌的關鍵胺基酸。如此一來希望可以設計一條低溶血性且高抗菌性的IL類似胜肽。接著針對設計的抗生肽進行螢光光譜的量測與分析,探討IL類似胜肽是否會產生聚集,進一步的探討聚集物和磷脂膜交互作用的機制。最後結合螢光光譜與分子動態模擬的分析,希望能提出設計低溶血高抗菌IL類似胜肽的關鍵因素。
首先,以分子動態模擬探討IL與兩種磷脂雙層膜的交互作用,其中使用電中性的磷脂質POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 來模仿紅血球的細胞膜;以3比1的比例混合POPC與帶負電荷磷脂質POPG (1-palmitoyl- 2-oleoyl-sn-glycero-3-phosphoglycerol) 則是用來模仿細菌的細胞膜。為了清楚觀察IL與兩種磷脂雙層膜作用的吸附階段與插膜階段的行為,總模擬時間一共花費4 ?s。進一步的以磷脂質親水頭基的分佈情形和疏水區的排列整齊度來了解磷脂膜受IL作用後的擾亂程度,結果發現當IL吸附於POPG/POPC混合膜時就會造成顯著的膜擾亂。而對POPC膜來說,IL在吸附階段造成的膜擾亂較小,但在穩定插膜階段則較為顯著。由上述結果,若增強IL對細菌膜的吸附程度可以增強其抗菌性,而抑制IL插入至血球細胞膜的疏水核心可降低其溶血性。進一步地分析在吸附和穩定插膜階段造成膜擾亂的關鍵胺基酸後,設計出三條低溶血之IL的類似物:IL-K7 (Pro7?Lys)、IL-F89 (Trp8 & Trp9 ?Phe)與IL-K7F89(Pro7?Lys, Trp8 & Trp9 ?Phe),其中IL-K7F89為最低溶血且還具有比IL還要強一倍的抗菌活性,這是由於同時降低了胜肽的疏水性與增加了胜肽的帶正電性。此外也進行IL-F89與兩種磷脂雙層膜的動態模擬來驗證是否膜擾亂與生物活性有關,結果發現IL-F89確實會降低仿血球細胞膜的擾亂且對於病菌細胞膜的擾亂程度和IL差異不大,因此本研究認為膜擾亂與其生物活性確實有高度的正相關。所以分子動態模擬的方法對研究如何設計低毒性的抗生胜肽來說不失為一利器。
另一方面,為了了解IL及其類似物是否在水相環境也會形成聚集物與聚集物對生物活性所造成的影響,首先由胜肽螢光強度之測量與丙烯醯胺 (acrylamide) 螢光淬滅實驗結果分析出胜肽在水溶液中會因疏水作用力而聚集,且IL及其類似物的聚集體大小不一。進一步地探討IL及其類似物與仿細菌膜與仿血球細胞膜的作用,其中包含胜肽在膜上之吸附量、胜肽插膜的深淺與胜肽聚集體在膜內的分散程度,希望能找到影響抗生胜肽生物活性之指標,這樣子即能提供設計抗生藥物的關鍵因素。另外也發現,降低胜肽疏水性會減弱其在仿血球細胞膜上之吸附與插膜深度,也因此降低了其溶血活性。另一方面,雖然增加胜肽之靜正電荷會使其抗菌活性上升,但卻不是影響胜肽與膜結合的主因,而是幫助胜肽聚集體更能在負電荷細菌細胞膜上分散。所以推論胜肽聚集行為與其在膜上的分散行為是主導IL及其類似物抗菌活性的因素。
本研究希望能夠藉由分子動態模擬並結合螢光實驗的分析探討胜肽與細胞膜的交互作用機制,歸納出設計抗菌胜肽之關鍵。綜合模擬與螢光實驗的結果發現胜肽的帶電性與疏水性的大小與其擾亂膜的能力有直接相關,特別是由螢光光譜分析而得知抗生肽的聚集體在仿病菌細胞膜的分散與抗菌活性直接相關,這確實在於如何設計一條低毒性與高抗菌性抗生肽方面是一重大發現。
摘要(英) Indolicidin (IL), a naturally synthesized peptide from bovine neutrophils, is a tryptophan-rich cationic antimicrobial peptide composing of only 13 amino acids. It is effective against a broad spectrum toward many kinds of pathogens. Therefore, it is regarded as a potential new-generation peptide antibiotic. However, similar to most antimicrobial peptides, indolicidin suffers from its possible disruption of erythrocytes. Recently, many researchers have paid much attention to design an IL-analogue with high antimicrobial activity but low hemolytic activity for applying in therapy, Systematically changing each amino acid in sequence has been tried to obtain an IL-analogue with high antimicrobial but low hemolytic activity. Limited success was obtained. A lot of efforts were then put into understanding the bactericidal and hemolytic mechanisms of indolicidin. Rational design can be taken after these mechanisms are understood. Many mechanisms have been proposed. Most of them were related to membrane kperturbation. We conjectured that IL peptide may perturb bacteria and erythrocyte cells with different extents arisen from the difference of the membrane compositions. We then try to evaluate the importance of each amino acid in sequence through the help of molecular dynamics simulation. Three IL analogues owning different antibacterial and hemolytic activities are designed by altering the important positions. Besides, it has been found that the aggregation of IL peptide in aqueous phase is related to its hemolysis. Furthermore, the fluorescence measurement and analysis were used to investigate whether the designed IL-analogues would form aggregates in aqueous solution or not and further investigated the actions of aggregative peptide-membrane interaction to evaluate the relationships between peptide structure and membrane perturbation. Criteria for peptide design can then be obtained.
The all-atom molecular dynamics simulation of interaction of IL peptide and two model lipid bilayers were performed with total simulation time up to 4??s to reveal the processes of IL adsorption onto and insertion into the membranes. The zwitterionic phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), were used to mimic mammal cell membrane. The bacterial cell membrane was modeled by the mixture of POPC and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphoglycerol (POPG). The packing order of lipid bilayer and the distribution of hydrophilic heads of phospholipids were presumably correlated to the membrane stability. It was found that the order of the mixed POPG/POPC lipid bilayer is reduced significantly upon the adsorption of IL. On the other hand, the order of the pure-POPC lipid bilayer is perturbed only slightly during the adsorption stage, but greatly reduced during the insertion stage. The results implied that the enhancement of IL adsorption on the microbial membrane may amplify its antimicrobial activity, while hemolysis may be reduced by the inhibition of IL insertion into the hydrophobic region of erythrocyte membrane. Three lower hemolytic IL-analogues including IL-K7 (Pro7 ? Lys), IL-F89 (Trp8 & Trp9 ? Phe) and IL-K7F89 (Pro7 ? Lys, Trp8 & Trp9 ? Phe) were further design from the analysis of critical amino acids in membrane perturbation. Moreover, the simulations of interaction between IL-F89 peptide and two model lipid bilayers were performed to discuss the relationships between membrane perturbation and biological activity. The results suggested that the perturbation of the hydrophobic core of lipid bilayer by single peptide is strongly related to its biological activities. Therefore, the molecular dynamics simulation of peptide-model membrane interaction successfully facilitated to design a peptide with higher antibacterial and at the same time lower cytotoxicity.
Moreover, the structure-activity relationships of indolicidin and its analogues were investigated through their interactions with the bacterium-like and erythrocyte-like model membranes. The intrinsic fluorescence and acrylamide quenching analysis were used to examine three designed IL-analogues would form aggregates in aqueous solution or not, and the results revealed that these peptides aggregate into different sizes in solution by hydrophobic interaction. The amounts of the peptide adsorption to model membrane, relative insertion depth of peptide in membrane, and degree of peptide aggregates dispersion in membrane, were defined to connect the peptide actions toward the model membranes to the bioactivities of the peptides. In particular, the roles of peptide aggregation to its bioactivities were interpreted. It was found that the reduction of peptide hydrophobicity reduces the peptide adsorption and insertion of peptides to the erythrocyte-like membrane. Subsequently, the hemolytic activity is reduced. On the other hand, the increase in peptide electropositivity would enhance the antibacterial activities. But the increase in electropositivity does not necessarily increase peptide-membrane binding. Instead, the peptide hydrophobicity facilitates aggregate formation in aqueous solution and the role of positive charges is to assist aggregate dissembling in the negatively charged bacterium-like membranes. Therefore, the peptide aggregation in solutions and dissembling in membranes play important roles in the antibacterial activity of indolicidin and its analogues.
By coupling the molecular dynamics simulations and experimental data analysis, this study proposed a new insight based on the peptide-membrane interaction for antimicrobial peptide design. The peptide electropositivity and hydrophobicity is highly related to membrane perturbation, in particular, the finding of peptide aggregates with higher electropositivity dispersing in electronegative bacterium-like membrane is a major reason to cause the higher antibacterial activity. Therefore, the tuning of peptide hydrophobicity and electropositivity for peptide aggregates in aqueous phase is an important implication for potential antibacterial peptide design.
關鍵字(中) ★ indolicidin
★ 鹼性抗生肽
★ 抗生肽藥物設計
★ 分子動態模擬
★ 螢光光譜分析
關鍵字(英) ★ fluorescence analysis
★ molecular dynamics simulation
★ indolcidin
★ cationic antimicrobial peptide
★ peptide drug design
論文目次 ABSTRACT (CHINESE) I
ABSTRACT (ENGLISH) III
ACKNOWLEDGMENTS III
LISTS OF FIGURES X
LISTS OF TABLES XII
CHAPTER 1. INTRODUCTION 1
1.1. Research Motivation and Purposes 1
1.2. Overview of This Thesis 5
CHAPTER 2. LITERATURE SURVEY 6
2.1 Research Background 6
2.1.1. Characteristics of CAPs 6
2.1.2. Biological Activities of CAPs 8
2.1.3. Proposed Mechanisms of CAPs Action 8
2.1.4. Tryptophan-Rich Antimicrobial Peptide Indolicidin 13
2.1.4.1. Characteristics of Indolicidin 13
2.1.4.2. Lower Cytotoxicity Indolicidin-Analogues Design 14
2.2. Fluorescence Analysis of Peptide-Membrane Interaction 16
2.3. Molecular Dynamics Simulation 18
2.3.1. Background of MD Simulation 18
2.3.2. MD Simulation of Peptide-Membrane Interaction 24
CHAPTER 3. MATERIALS AND METHODS 26
3.1. MD Simulation Methods 26
3.1.1. System Building 26
3.1.2. Force Field and Simulation Setup 27
3.1.3. Simulation Analysis 28
3.1.3.1. Membrane Ordering 28
3.1.3.2. Minimum Salt Bridge Distance 28
3.2. Experimental Methods 29
3.2.1. Chemical Compounds and Biomolecules 29
3.2.2. Measurements of the Bioactivities of IL and Its Analogues 29
3.2.3. Preparation of SUVs 30
3.2.4. Fluorescence Spectra Measurements 31
3.2.5. AAm Quenching of Peptides in PBS Buffer 31
3.2.6. Dual-functional Fluorescence Quenching Assays 32
3.2.7. CD Measurements 32
3.2.8. Peptide-SUVs Equilibrium Dialysis Measurements 33
3.2.9. Quantification of Intrinsic Fluorescence of Peptides in SUVs 33
3.2.10. Dispersion Index of Peptides in Aqueous Solution 34
3.2.11. Dispersion Index of Peptides in SUVs 34
3.2.12. Dispersion Index and Depth Index of Peptides in SUVs 34
CHAPTER 4. MD SIMULATIONS FOR IL-ANALOGUES DESIGN 36
4.1. Equilibrium of Two Model Lipid Bilayers 36
4.2. IL-Model Membranes Interaction 37
4.2.1. IL-POPC Lipid Bilayer Association 37
4.2.2. IL–Mixed POPG/POPC Lipid Bilayer Association. 39
4.2.3. Definitions of Adsorption and Stable Insertion Stages. 40
4.2.4. IL-Mediated Lipid Bilayer Disordering. 41
4.2.5. Critical Amino Acids for the Disordering of Lipid Bilayer. 44
4.4. Antimicrobial and Hemolytic Activities of Designed Peptides. 50
4.5. MD simulation of IL-analogues with Model Lipid Bilayer 54
CHAPTER 5. ACTION OF CAPS-MEMBRANE ASSOCIATION 56
5.1. Aggregation of IL-Analogues in Aqueous Solution 56
5.1.1. Determination of aggregation of IL-Analogues 57
5.1.2. Driving Force of Peptide Aggregation 59
5.2. IL-analogues and Model Membranes Interactions 60
5.2.1. Amounts of IL-analogues Adsorption to Model Membranes 61
5.2.2. Degree of Peptide Dispersion within the Model Membranes 62
5.2.3. Insertion Depth of IL-Analogues in Model Membrane 63
5.3. Implications on Cationic Antimicrobial Peptide Design 64
CHAPTER 6. CONCLUSIONS 67
FIGURES 70
TABLES 94
REFERENCES 97
APPENDIX-PUBLICATION LISTS 112
2.1.1. Characteristics of CAPs 6
2.1.2. Biological Activities of CAPs 8
2.1.3. Proposed Mechanisms of CAPs Action 8
2.1.4. Tryptophan-Rich Antimicrobial Peptide Indolicidin 13
2.1.4.1. Characteristics of Indolicidin 13
2.1.4.2. Lower Cytotoxicity Indolicidin-Analogues Design 14
2.2. Fluorescence Analysis of Peptide-Membrane Interaction 16
2.3. Molecular Dynamics Simulation 18
2.3.1. Background of MD Simulation 18
2.3.2. MD Simulation of Peptide-Membrane Interaction 24
CHAPTER 3. MATERIALS AND METHODS 26
3.1. MD Simulation Methods 26
3.1.1. System Building 26
3.1.2. Force Field and Simulation Setup 27
3.1.3. Simulation Analysis 28
3.1.3.1. Membrane Ordering 28
3.1.3.2. Minimum Salt Bridge Distance 28
3.2. Experimental Methods 29
3.2.1. Chemical Compounds and Biomolecules 29
3.2.2. Measurements of the Bioactivities of IL and Its Analogues 29
3.2.3. Preparation of SUVs 30
3.2.4. Fluorescence Spectra Measurements 31
3.2.5. AAm Quenching of Peptides in PBS Buffer 31
3.2.6. Dual-functional Fluorescence Quenching Assays 32
3.2.7. CD Measurements 32
3.2.8. Peptide-SUVs Equilibrium Dialysis Measurements 33
3.2.9. Quantification of Intrinsic Fluorescence of Peptides in SUVs 33
3.2.10. Dispersion Index of Peptides in Aqueous Solution 34
3.2.11. Dispersion Index of Peptides in SUVs 34
3.2.12. Dispersion Index and Depth Index of Peptides in SUVs 34
CHAPTER 4. MD SIMULATIONS FOR IL-ANALOGUES DESIGN 36
4.1. Equilibrium of Two Model Lipid Bilayers 36
4.2. IL-Model Membranes Interaction 37
4.2.1. IL-POPC Lipid Bilayer Association 37
4.2.2. IL–Mixed POPG/POPC Lipid Bilayer Association. 39
4.2.3. Definitions of Adsorption and Stable Insertion Stages. 40
4.2.4. IL-Mediated Lipid Bilayer Disordering. 41
4.2.5. Critical Amino Acids for the Disordering of Lipid Bilayer. 44
4.4. Antimicrobial and Hemolytic Activities of Designed Peptides. 50
4.5. MD simulation of IL-analogues with Model Lipid Bilayer 54
CHAPTER 5. ACTION OF CAPS-MEMBRANE ASSOCIATION 56
5.1. Aggregation of IL-Analogues in Aqueous Solution 56
5.1.1. Determination of aggregation of IL-Analogues 57
5.1.2. Driving Force of Peptide Aggregation 59
5.2. IL-analogues and Model Membranes Interactions 60
5.2.1. Amounts of IL-analogues Adsorption to Model Membranes 61
5.2.2. Degree of Peptide Dispersion within the Model Membranes 62
5.2.3. Insertion Depth of IL-Analogues in Model Membrane 63
5.3. Implications on Cationic Antimicrobial Peptide Design 64
CHAPTER 6. CONCLUSIONS 67
FIGURES 70
TABLES 94
REFERENCES 97
APPENDIX-PUBLICATION LISTS 112
參考文獻 1. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 389-395.
2. Yeaman, M. R.; Yount, N. Y., Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55 (1), 27-55.
3. Mitra, R. N.; Shome, A.; Paul, P.; Das, P. K., Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles. Org. Biomol. Chem. 2009, 7 (1), 94-102.
4. Matsuzaki, K., Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (8), 1687-1692.
5. Yu, P. L.; Cross, M. L.; Haverkamp, R. G., Antimicrobial and immunomodulatory activities of an ovine proline/arginine-rich cathelicidin. Int. J. Antimicrob. Ag. 2010, 35 (3), 288-291.
6. Gordon, Y. J.; Romanowski, E. G.; McDermott, A. M., A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Current. Eye. Research. 2005, 30 (7), 505-515.
7. Selsted, M. E.; Novotny, M. J.; Morris, W. L.; Tang, Y. Q.; Smith, W.; Cullor, J. S., Indolicidin, a Novel Bactericidal Tridecapeptide Amide from Neutrophils. J. Biol. Chem. 1992, 267 (7), 4292-4295.
8. Ahmad, I.; Perkins, W. R.; Lupan, D. M.; Selsted, M. E.; Janoff, A. S., Liposomal Entrapment of the Neutrophil-Derived Peptide Indolicidin Endows It with in-Vivo Antifungal Activity. Biochim. Biophys. Acta-Biomembr. 1995, 1237 (2), 109-114.
9. Giacometti, A.; Cirioni, O.; Greganti, G.; Quarta, M.; Scalise, G., In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob. Agents Chemother. 1998, 42 (12), 3320-3324.
10. Saido-Sakanaka, H.; Ishibashi, J.; Momotani, E.; Amano, F.; Yamakawa, M., In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin. Peptides 2004, 25 (1), 19-27.
11. Friedrich, C. L.; Rozek, A.; Patrzykat, A.; Hancock, R. E. W., Structure and Mechanism of Action of an Indolicidin Peptide Derivative with Improved Activity against Gram-positive Bacteria. J. Biol. Chem. 2001, 276 (26), 24015-24022.
12. Friedrich, C. L.; Moyles, D.; Beveridge, T. J.; Hancock, R. E. W., Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Ch 2000, 44 (8), 2086-2092.
13. Bhargava, A.; Osusky, M.; Hancock, R. E.; Forward, B. S.; Kay, W. W.; Misra, S., Antiviral indolicidin variant peptides: Evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant. Sci. 2007, 172 (3), 515-523.
14. Robinson, W. E.; McDougall, B.; Tran, D.; Selsted, M. E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 1998, 63 (1), 94-100.
15. Yasin, B.; Pang, M.; Turner, J. S.; Cho, Y.; Dinh, N. N.; Waring, A. J.; Lehrer, R. I.; Wagar, E. A., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19 (3), 187-194.
16. Schluesener, H. J.; Radermacher, S.; Melms, A.; Jung, S., Leukocytic antimicrobial peptides kill autoimmune T cells. J. Neuroimmunol. 1993, 47 (2), 199-202.
17. Subbalakshmi, C.; Krishnakumari, V.; Nagaraj, R.; Sitaram, N., Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett. 1996, 395 (1), 48-52.
18. Falla, T. J.; Hancock, R. E. W., Improved activity of a synthetic indolicidin analog. Antimicrob. Agents Chemother. 1997, 41 (4), 771-775.
19. Subbalakshmi, C.; Bikshapathy, E.; Sitaram, N.; Nagaraj, R., Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem. Biophys. Res. Commun. 2000, 274 (3), 714-716.
20. Staubitz, P.; Peschel, A.; Nieuwenhuizen, W. F.; Otto, M.; Gotz, F.; Jung, G.; Jack, R. W., Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J. Pept. Sci. 2001, 7 (10), 552-564.
21. Halevy, R.; Rozek, A.; Kolusheva, S.; Hancock, R. E. W.; Jelinek, R., Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides 2003, 24 (11), 1753-1761.
22. Yang, S. T.; Shin, S. Y.; Hahm, K. S.; Il Kim, J., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int. J. Antimicrob. Agents 2006, 27 (4), 325-330.
23. Falla, T. J.; Karunaratne, D. N.; Hancock, R. E. W., Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 1996, 271 (32), 19298-19303.
24. Wu, M. H.; Maier, E.; Benz, R.; Hancock, R. E. W., Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999, 38 (22), 7235-7242.
25. Ladokhin, A. S.; Selsted, M. E.; White, S. H., Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys. J. 1997, 72 (2), 794-805.
26. Caputo, G. A.; London, E., Using a Novel Dual Fluorescence Quenching Assay for Measurement of Tryptophan Depth within Lipid Bilayers To Determine Hydrophobic α-Helix Locations within Membranes. Biochemistry 2003, 42 (11), 3265-3274.
27. Hancock, R. E. W.; Chapple, D. S., Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43 (6), 1317-1323.
28. Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003, 21 (6), 465-499.
29. NissenMeyer, J.; Nes, I. F., Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 1997, 167 (2-3), 67-77.
30. Hancock, R. E. W.; Diamond, G., The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8 (9), 402-410.
31. Wang, Z.; Wang, G., APD: the Antimicrobial Peptide Database. Nucl. Acids Res. 2004, 32 (suppl_1), D590-592.
32. Wang, G.; Li, X.; Wang, Z., APD2: the updated antimicrobial peptide database and its application in peptide design. Nucl. Acids Res. 2009, 37 (suppl_1), D933-937.
33. Bechinger, B., Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin. J. Membr. Biol. 1997, 156 (3), 197-211.
34. Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M., Dermaseptin S9, an α-Helical Antimicrobial Peptide with a Hydrophobic Core and Cationic Termini. Biochemistry 2005, 45 (2), 468-480.
35. Houston, M. E.; Kondejewski, L. H.; Karunaratne, D. N.; Gough, M.; Fidai, S.; Hodges, R. S.; Hancock, R. E. W., Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J. Pept. Res. 1998, 52 (2), 81-88.
36. Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M., Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 2006, 45 (2), 468-480.
37. Powers, J.-P. S.; Rozek, A.; Hancock, R. E. W., Structure-activity relationships for the [beta]-hairpin cationic antimicrobial peptide polyphemusin I. BBA-Proteins Proteomics 2004, 1698 (2), 239-250.
38. Schibli, D. J.; Hwang, P. M.; Vogel, H. J., Structure of the Antimicrobial Peptide Tritrpticin Bound to Micelles: A Distinct Membrane-Bound Peptide Fold. Biochemistry 1999, 38 (51), 16749-16755.
39. Rozek, A.; Friedrich, C. L.; Hancock, R. E. W., Structure of the Bovine Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and Sodium Dodecyl Sulfate Micelles. Biochemistry 2000, 39 (51), 15765-15774.
40. Appelt, C.; Wessolowski, A.; Söderhäll, J. A.; Dathe, M.; Schmieder, P., Structure of the Antimicrobial, Cationic Hexapeptide Cyclo(RRWWRF) and Its Analogues in Solution and Bound to Detergent Micelles. Chem. Bio. Chem. 2005, 6 (9), 1654-1662.
41. Vignal, E.; Chavanieu, A.; Roch, P.; Chiche, L.; Grassy, G.; Calas, B.; Aumelas, A., Solution structure of the antimicrobial peptide ranalexin and a study of its interaction with perdeuterated dodecylphosphocholine micelles. Europ. J. Biochem. 1998, 253 (1), 221-228.
42. Uteng, M.; Hauge, H. H.; Markwick, P. R. L.; Fimland, G.; Mantzilas, D.; Nissen-Meyer, J.; Muhle-Goll, C., Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridges. Biochemistry 2003, 42 (39), 11417-11426.
43. Hirsch, T.; Metzig, M.; Niederbichler, A.; Steinau, H. U.; Eriksson, E.; Steinstraesser, L., Role of host defense peptides of the innate immune response in sepsis. Shock 2008, 30 (2), 117-126.
44. De Smet, K.; Contreras, R., Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005, 27 (18), 1337-1347.
45. Nizet, V.; Gallo, R. L., Cathelicidins and innate defense against invasive bacterial infection. Scand. J. Infect. Dis. 2003, 35 (9), 670-676.
46. Shafer, W. M.; Katzif, S.; Bowers, S.; Fallon, M.; Hubalek, M.; Reed, M. S.; Veprek, P.; Pohl, J., Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens. Curr. Pharm. Design. 2002, 8 (9), 695-702.
47. Schutte, B. C.; McCray, P. B., beta-defensins in lung host defense. Annu. Rev. Physiol. 2002, 64, 709-748.
48. Frecer, V.; Ho, B.; Ding, J. L., De Novo Design of Potent Antimicrobial Peptides. Antimicrob. Agents. Chemother. 2004, 48 (9), 3349-3357.
49. Hilpert, K.; Volkmer-Engert, R.; Walter, T.; Hancock, R. E. W., High-throughput generation of small antibacterial peptides with improved activity. Nat. Biotechnol. 2005, 23 (8), 1008-1012.
50. Rathinakumar, R.; Walkenhorst, W. F.; Wimley, W. C., Broad-Spectrum Antimicrobial Peptides by Rational Combinatorial Design and High-Throughput Screening: The Importance of Interfacial Activity. J. Am. Chem. Soc. 2009, 131 (22), 7609-7617.
51. Rausch, J. M.; Marks, J. R.; Wimley, W. C., Rational combinatorial design of pore-forming β-sheet peptides. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (30), 10511-10515.
52. Stromstedt, A. A.; Pasupuleti, M.; Schmidtchen, A.; Malmsten, M., Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (9), 1916-1923.
53. Bechinger, B., Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr. Opin. Colloid. In. 2009, 14 (5), 349-355.
54. Jelokhani-Niaraki, M.; Hodges, R. S.; Meissner, J. E.; Hassenstein, U. E.; Wheaton, L., Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophys. J. 2008, 95 (7), 3306-3321.
55. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by [alpha]-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta-Biomembr. 1999, 1462 (1-2), 55-70.
56. Sitaram, N.; Nagaraj, R., Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim. Biophys. Acta-Biomembr. 1999, 1462 (1-2), 29-54.
57. Andrushchenko, V. V.; Aarabi, M. H.; Nguyen, L. T.; Prenner, E. J.; Vogel, H. J., Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta. 2008, 1778 (4), 1004-14.
58. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1184-1202.
59. Kosol, S.; Zangger, K., Dynamics and orientation of a cationic antimicrobial peptide in two membrane-mimetic systems. J. Struct. Biol. 2010, 170 (1), 172-179.
60. Mason, A. J.; Marquette, A.; Bechinger, B., Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophys. J. 2007, 93 (12), 4289-4299.
61. Dusa, A.; Kaylor, J.; Edridge, S.; Bodner, N.; Hong, D.-P.; Fink, A. L., Characterization of Oligomers during α-Synuclein Aggregation Using Intrinsic Tryptophan Fluorescence. Biochemistry 2006, 45 (8), 2752-2760.
62. Schwarz, G., A universal thermodynamic approach to analyze biomolecular binding experiments. Biophys. Chem. 2000, 86 (2-3), 119-129.
63. Raghuraman, H.; Chattopadhyay, A., Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 2006, 83 (2), 111-121.
64. Vad, B.; Thomsen, L. A.; Bertelsen, K.; Franzmann, M.; Pedersen, J. M.; Nielsen, S. B.; Vosegaard, T.; Valnickova, Z.; Skrydstrup, T.; Enghild, J. J.; Wimmer, R.; Nielsen, N. C.; Otzen, D. E., Divorcing folding from function: How acylation affects the membrane-perturbing properties of an antimicrobial peptide. BA-Proteins Proteomics 2010, 1804 (4), 806-820.
65. Rotem, S.; Radzishevsky, I. S.; Bourdetsky, D.; Navon-Venezia, S.; Carmeli, Y.; Mor, A., Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. Faseb. J. 2008, 22 (8), 2652-2661.
66. Jiang, Z. Q.; Vasil, A. I.; Hale, J. D.; Hancock, R. E. W.; Vasil, M. L.; Hodges, R. S., Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 2008, 90 (3), 369-383.
67. Lee, D. L.; Powers, J. P. S.; Pflegerl, K.; Vasil, M. L.; Hancock, R. E. W.; Hodges, R. S., Effects of single D-amino acid substitutions on disruption of beta-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. J. Pept. Res. 2004, 63 (2), 69-84.
68. Ando, S.; Nishikawa, H.; Takiguchi, H.; Lee, S.; Sugihara, G., Antimicrobial Specificity and Hemolytic-Activity of Cyclized Basic Amphiphilic Beta-Structural Model Peptides and Their Interactions with Phospholipid-Bilayers. Biochim. Biophys. Acta. 1993, 1147 (1), 42-49.
69. Davidson, D. J.; Currie, A. J.; Reid, G. S. D.; Bowdish, D. M. E.; MacDonald, K. L.; Ma, R. C.; Hancock, R. E. W.; Speert, D. P., The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004, 172 (2), 1146-1156.
70. Chaly, Y. V.; Paleolog, E. M.; Kolesnikova, T. S.; Tikhonov, I. I.; Petratchenko, E. V.; Voitenok, N. N., Human neutrophil alpha-defensin modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine. Netw. 2000, 11 (2), 257-266.
71. El Amri, C.; Lacombe, C.; Zimmerman, K.; Ladram, A.; Amiche, M.; Nicolas, P.; Bruston, F., The plasticins: Membrane adsorption, lipid disorders, and biological activity. Biochemistry 2006, 45 (48), 14285-14297.
72. Chekmenev, E. Y.; Vollmar, B. S.; Forseth, K. T.; Manion, M. N.; Jones, S. M.; Wagner, T. J.; Endicott, R. M.; Kyriss, B. P.; Homem, L. M.; Pate, M.; He, J.; Raines, J.; Gor'kov, P. L.; Brey, W. W.; Mitchell, D. J.; Auman, A. J.; Ellard-Ivey, M. J.; Blazyk, J.; Cotten, M., Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1359-1372.
73. Mani, R.; Waring, A. J.; Lehrer, R. I.; Hong, M., Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: A P-31 and H-1 NMR study. Biochim. Biophys. Acta-Biomembr. 2005, 1716 (1), 11-18.
74. Bechinger, B., Structure and function of membrane-lytic peptides. Crit. Rev. Plant.Sci. 2004, 23 (3), 271-292.
75. Tachi, T.; Epand, R. F.; Epand, R. M.; Matsuzaki, K., Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 2002, 41 (34), 10723-10731.
76. Jelokhani-Niaraki, M.; Prenner, E. J.; Kay, C. M.; McElhaney, R. N.; Hodges, R. S., Conformation and interaction of the cyclic cationic antimicrobial peptides in lipid bilayers. J. Pept. Res. 2002, 60 (1), 23-36.
77. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1184-1202.
78. Ramamoorthy, A.; Lee, D.-K.; Narasimhaswamy, T.; Nanga, R. P. R., Cholesterol reduces pardaxin's dynamics--a barrel-stave mechanism of membrane disruption investigated by solid-state NMR. Biochim. Biophys. Acta-Biomembr. 2010, 1798 (2), 223-227.
79. Galanth, C.; Abbassi, F.; Lequin, O.; Ayala-Sanmartin, J.; Ladram, A.; Nicolas, P.; Amiche, M., Mechanism of Antibacterial Action of Dermaseptin B2: Interplay between Helix-Hinge-Helix Structure and Membrane Curvature Strain. Biochemistry 2009, 48 (2), 313-327.
80. Lu, J. X.; Blazyk, J.; Lorigan, G. A., Exploring membrane selectivity of the antimicrobial peptide KIGAKI using solid-state NMR spectroscopy. Biochim. Biophys. Acta-Biomembr. 2006, 1758 (9), 1303-1313.
81. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W., Membrane pores induced by magainin. Biochemistry 1996, 35 (43), 13723-13728.
82. Leontiadou, H.; Mark, A. E.; Marrink, S. J., Antimicrobial peptides in action. J. Am. Chem. Soc. 2006, 128 (37), 12156-12161.
83. Chen, F. Y.; Lee, M. T.; Huang, H. W., Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys. J. 2003, 84 (6), 3751-3758.
84. Sengupta, D.; Leontiadou, H.; Mark, A. E.; Marrink, S. J., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta-Biomembr. 2008, 1778 (10), 2308-2317.
85. Hsu, C. H.; Chen, C. P.; Jou, M. L.; Lee, A. Y. L.; Lin, Y. C.; Yu, Y. P.; Huang, W. T.; Wu, S. H., Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res. 2005, 33 (13), 4053-4064.
86. Subbalakshmi, C.; Sitaram, N., Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 1998, 160 (1), 91-96.
87. Sitaram, N.; Subbalakshmi, C.; Nagaraj, R., Indolicidin, a 13-residue basic antimicrobial peptide rich in tryptophan and proline, interacts with Ca2+-calmodulin. Biochem. Biophys. Res. Commun. 2003, 309 (4), 879-884.
88. Zhao, H.; Kinnunen, P. K. J., Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2003, 47 (3), 965-971.
89. Ha, T. H.; Kim, C. H.; Park, J. S.; Kim, K., Interaction of indolicidin with model lipid bilayer: Quartz crystal microbalance and atomic force microscopy study. Langmuir 2000, 16 (2), 871-875.
90. Lee, D. G.; Kim, H. K.; Kim, S. A.; Park, Y.; Park, S. C.; Jang, S. H.; Hahm, K. S., Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 2003, 305 (2), 305-310.
91. Shaw, J. E.; Alattia, J. R.; Verity, J. E.; Prive, G. G.; Yip, C. M., Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol. 2006, 154 (1), 42-58.
92. Hsu, J. C. Y.; Yip, C. M., Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys. J. 2007, 92 (12), L100-L102.
93. Khandelia, H.; Kaznessis, Y. N., Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: Molecular dynamics simulations. J. Phys. Chem. B 2007, 111 (1), 242-250.
94. Chan, C.; Burrows, L. L.; Deber, C. M., Helix induction in antimicrobial peptides by alginate in biofilms. J. Biol. Chem. 2004, 279 (37), 38749-38754.
95. Kamath, S. D.; Kartha, V. B.; Mahato, K. K., Dynamics of l-tryptophan in aqueous solution by simultaneous laser induced fluorescence (LIF) and photoacoustic spectroscopy (PAS). Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2008, 70 (1), 187-194.
96. Kiyota, T.; Lee, S.; Sugihara, G., Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry 1996, 35 (40), 13196-13204.
97. Sugawara, M.; Resende, J. M.; Moraes, C. M.; Marquette, A.; Chich, J. F.; Metz-Boutigue, M. H.; Bechinger, B., Membrane structure and interactions of human catestatin by multidimensional solution and solid-state NMR spectroscopy. Faseb. J. 2010, 24 (6), 1737-1746.
98. Galdiero, S.; Falanga, A.; Vitiello, G.; Vitiello, M.; Pedone, C.; D'Errico, G.; Galdiero, M., Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process. Biochim. Biophys. Acta-Biomembr. 2010, 1798 (3), 579-591.
99. Ladokhin, A. S.; Wimley, W. C.; White, S. H., Leakage of membrane vesicle contents: Determination of mechanism using fluorescence requenching. Biophys. J. 1995, 69 (5), 1964-1971.
100. Xu, Z. P.; Paparcone, R.; Buehler, M. J., Alzheimer's A beta(1-40) Amyloid Fibrils Feature Size-Dependent Mechanical Properties. Biophys. J. 2010, 98 (10), 2053-2062.
101. Steinhauser, M. O.; Hiermaier, S., A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics. Int. J. Mol. Sci. 2009, 10 (12), 5135-5216.
102. Kind, M.; Woll, C., Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 2009, 84 (7-8), 230-278.
103. Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N. K., Investigation of stress-strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theor. Appl. Fract. Mec. 2009, 52 (3), 158-164.
104. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'homme, R. K.; Brinson, L. C., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3 (6), 327-331.
105. Praprotnik, M.; Junghans, C.; Delle Site, L.; Kremer, K., Simulation approaches to soft matter: Generic statistical properties vs. chemical details. Comput. Phys. Commun. 2008, 179 (1-3), 51-60.
106. Sakae, Y.; Okamoto, Y., Determination method of the balance of the secondary-structure-forming tendencies of force fields. Mol. Simulat. 2010, 36 (2), 159-165.
107. Juraszek, J.; Bolhuis, P. G., Effects of a Mutation on the Folding Mechanism of beta-Hairpin. J. Phys. Chem. B 2009, 113 (50), 16184-16196.
108. Tuszynska, I.; Bujnicki, J. M., Predicting Atomic Details of the Unfolding Pathway for YibK, a Knotted Protein from the SPOUT Superfamily. J. Biomol. Struct. Dyn. 2010, 27 (4), 511-520.
109. Kannan, S.; Zacharias, M., Folding simulations of Trp-cage mini protein in explicit solvent using biasing potential replica-exchange molecular dynamics simulations. Proteins 2009, 76 (2), 448-460.
110. Ulmschneider, M. B.; Ulmschneider, J. P., Folding Peptides into Lipid Bilayer Membranes. J. Chem. Theory. Comput. 2008, 4 (11), 1807-1809.
111. Monticelli, L.; Sorin, E. J.; Tieleman, D. P.; Pande, V. S.; Colombo, G., Molecular simulation of multistate peptide dynamics: A comparison between microsecond timescale sampling and multiple shorter trajectories. J. Comput. Chem. 2008, 29 (11), 1740-1752.
112. Jang, S.; Shin, S., Computational study on the structural diversity of amyloid beta peptide (A beta(10-35)) oligomers. J. Phys. Chem. B 2008, 112 (11), 3479-3484.
113. Tsai, L.; Chen, H. W.; Lin, T.; Wang, W. Z.; Sun, Y. C., Molecular dynamics simulation of folding of a short helical toxin peptide. J. Theor. Comput. Chem. 2007, 6 (2), 213-221.
114. Legge, E. S.; Treutlein, H.; Howlett, G. J.; Yarovsky, I., Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys. Chem. 2007, 130 (3), 102-113.
115. Rundgren, H.; Mark, P.; Laaksonen, A., Molecular dynamics simulations of conserved Hox protein hexapeptides. I. Folding behavior in water solution. J. Mol. Struc-Theochem 2007, 810 (1-3), 113-120.
116. Bratko, D.; Cellmer, T.; Prausnitz, J. M.; Blanch, H. W., Molecular simulation of protein aggregation. Biotechnol. Bioeng. 2007, 96 (1), 1-8.
117. Daura, X., Molecular dynamics simulation of peptide folding. Theor. Chem. Acc. 2006, 116 (1-3), 297-306.
118. Lei, H. X.; Wu, C.; Wang, Z. X.; Duan, Y., Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta 2-microglobulin: Implication for the protofibril structure. J. Mol. Biol. 2006, 356 (4), 1049-1063.
119. Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F., Structure-activity relationships of a caged thrombin binding DNA aptamer: Insight gained from molecular dynamics simulation studies. J. Struct. Biol. 2009, 166 (3), 241-250.
120. Tanida, Y.; Ito, M. S.; Fujitani, H., Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values. Chem. Phys. 2007, 337 (1-3), 135-143.
121. Golebiowski, J.; Antonczak, S.; Fernandez-Carmona, J.; Condom, R.; Cabrol-Bass, D., Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations. J. Mol. Model. 2004, 10 (5-6), 408-417.
122. Schneider, C.; Suhnel, J., A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex. Biopolymers 1999, 50 (3), 287-302.
123. Mohanty, D.; Bansal, M., Chain Folding and a-T Pairing in Human Telomeric DNA - a Model-Building and Molecular-Dynamics Study. Biophys. J. 1995, 69 (3), 1046-1067.
124. Tzvetanov, S.; Shushkov, P.; Velinova, M.; Ivanova, A.; Tadjer, A., Molecular Dynamics Study of the Electric and Dielectric Properties of Model DPPC and Dicaprin Insoluble Monolayers: Size Effect. Langmuir 2010, 26 (11), 8093-8105.
125. Psachoulia, E.; Marshall, D. P.; Sansom, M. S. P., Molecular Dynamics Simulations of the Dimerization of Transmembrane alpha-Helices. Accounts. Chem. Res. 2010, 43 (3), 388-396.
126. Mehrnejad, F.; Zarei, M., Molecular Dynamics Simulation Study of the Interaction of Piscidin 1 with DPPC Bilayers: Structure-Activity Relationship. J. Biomol. Struct. Dyn. 2010, 27 (4), 551-559.
127. Capone, R.; Mustata, M.; Jang, H.; Arce, F. T.; Nussinov, R.; Lal, R., Antimicrobial Protegrin-1 Forms Ion Channels: Molecular Dynamic Simulation, Atomic Force Microscopy, and Electrical Conductance Studies. Biophys. J. 2010, 98 (11), 2644-2652.
128. Linse, P., On the convergence of simulation of asymmetric electrolytes with charge asymmetry 60 : 1. J. Chem. Phys. 1999, 110 (7), 3493-3501.
129. Lai, S. K.; Kau, C. Y.; Tang, Y. W.; Chan, K. Y., Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores. Phys. Rev. E 2004, 69 (5).
130. Bahar, I.; Badur, B.; Doruker, P., Solvent Effect on Translational Diffusivity and Orientational Mobility of Polymers in Solution - a Molecular-Dynamics Study. J. Chem. Phys. 1993, 99 (3), 2235-2246.
131. Prathab, B.; Subramanian, V.; Aminabhavi, T. M., Computation of surface energy and surface segregation phenomena of perfluorinated copolymers and blends - A molecular modeling approach. Polymer 2007, 48 (1), 417-424.
132. Tieleman, D. P.; Sansom, M. S. P., Molecular dynamics simulations of antimicrobial peptides: From membrane binding to trans-membrane channels. Int. J. Quantum. Chem. 2001, 83 (3-4), 166-179.
133. Tang, M.; Waring, A. J.; Hong, M., Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Biochim. Biophys. Acta-Biomembr. 2009, 1788 (2), 514-521.
134. Mani, R.; Cady, S. D.; Tang, M.; Waring, A. J.; Lehrert, R. I.; Hong, M., Membrane-dependent oligomeric structure and pore formation of beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. P. Natl. Acad. Sci. U.S.A. 2006, 103 (44), 16242-16247.
135. Papo, N.; Shai, Y., A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005, 280 (11), 10378-10387.
136. Henzler-Wildman, K. A.; Martinez, G. V.; Brown, M. F.; Ramamoorthy, A., Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 2004, 43 (26), 8459-8469.
137. Shepherd, C. M.; Vogel, H. J.; Tieleman, D. P., Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations. Biochem. J. 2003, 370, 233-243.
138. Schibli, D. J.; Epand, R. F.; Vogel, H. J.; Epand, R. M., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell. Biol. 2002, 80 (5), 667-677.
139. Pimthon, J.; Willumeit, R.; Lendlein, A.; Hofmann, D., Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. J. Pept. Sci. 2009, 15 (10), 654-667.
140. Manna, M.; Mukhopadhyay, C., Cause and Effect of Melittin-Induced Pore Formation: A Computational Approach. Langmuir 2009, 25 (20), 12235-12242.
141. Rozek, A.; Friedrich, C. L.; Hancock, R. E. W., Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 2000, 39 (51), 15765-15774.
142. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14 (1), 33-38.
143. MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102 (18), 3586-3616.
144. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926-935.
145. Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151 (1), 283-312.
146. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103 (11), 4613.
147. Steinbach, P. J.; Brooks, B. R., New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. J. Comput. Chem. 1994, 15 (7), 667-683.
148. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 1977, 23 (3), 327-341.
149. Norbert Kučerka; Tristram-Nagle, S.; Nagle, a. J. F., Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. J. Membrane. Biol. 2005, 208, 193-202.
150. Elmore, D. E., Molecular dynamics simulation of a phosphatidylglycerol membrane. Febs Lett 2006, 580 (1), 144-148.
151. Subbalakshmi, C.; Krishnakumari, V.; Sitaram, N.; Nagaraj, R., Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J Bioscience. 1998, 23 (1), 9-13.
152. Huang, H. W., Molecular mechanism of antimicrobial peptides: The origin of cooperativity. BBA-Biomembranes 2006, 1758 (9), 1292-1302.
153. Lee, M.-T.; Hung, W.-C.; Chen, F.-Y.; Huang, H. W., Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl. Acad. Sci. 2008, 105 (13), 5087-5092.
154. Mecke, A.; Lee, D. K.; Ramamoorthy, A.; Orr, B. G.; Holl, M. M. B., Membrane thinning due to antimicrobial peptide binding: An atomic force microscopy study of MSI-78 in lipid bilayers. Biophys. J. 2005, 89 (6), 4043-4050.
155. Jang, H.; Ma, B.; Woolf, T. B.; Nussinov, R., Interaction of protegrin-1 with lipid bilayers: Membrane thinning effect. Biophys. J. 2006, 91 (8), 2848-2859.
156. Jing, W.; Hunter, H. N.; Hagel, J.; Vogel, H. J., The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers. J. Pept. Res. 2003, 61 (5), 219-229.
157. Kang, J. H.; Shin, S. Y.; Jang, S. Y.; Kim, K. L.; Hahm, E. S., Effects of tryptophan residues of porcine myeloid antibacterial peptide PMAP-23 on antibiotic activity. Biochem. Biophys. Res. Commun. 1999, 264 (1), 281-286.
158. Schibli, D. J.; Nguyen, L. T.; Kernaghan, S. D.; Rekdal, O.; Vogel, H. J., Structure-Function Analysis of Tritrpticin Analogs: Potential Relationships between Antimicrobial Activities, Model Membrane Interactions, and Their Micelle-Bound NMR Structures. Biophys. J. 2006, 91 (12), 4413-4426.
159. This peptide has same MIC as parent IL. The MIC for IL is 0.4 mM.
160. Khandelia, H.; Ipsen, J. H.; Mouritsen, O. G., The impact of peptides on lipid membranes. BBA-Biomembranes 2008, 1778 (7-8), 1528-1536.
161. Muino, P. L.; Callis, P. R., Solvent Effects on the Fluorescence Quenching of Tryptophan by Amides via Electron Transfer. Experimental and Computational Studies. J. Phys. Chem. B 2009, 113 (9), 2572-2577.
162. Mattila, J. P.; Sabatini, K.; Kinnunen, P. K., Oxidized phospholipids as potential molecular targets for antimicrobial peptides. Biochim Biophys Acta 2008, 1778 (10), 2041-50.
163. Yang, S. T.; Shin, S. Y.; Kim, Y. C.; Kim, Y. M.; Hahm, K. S.; Kim, J. I., Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Bioph Res Co 2002, 296 (5), 1044-1050.
164. Papo, N.; Shai, Y., Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 2003, 24 (11), 1693-1703.
165. Kim, S.-M.; Kim, J.-M.; Joshi, B. P.; Cho, H.; Lee, K.-H., Indolicidin-derived antimicrobial peptide analogs with greater bacterial selectivity and requirements for antibacterial and hemolytic activities. BBA-Proteins Proteomics 2009, 1794 (2), 185-192.
166. Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M. L.; Barra, D., Temporins, Antimicrobial Peptides from the European Red Frog. Europ. J. Biochemistry 1996, 242 (3), 788-792.
167. Dai, L.; Yasuda, A.; Naoki, H.; Corzo, G.; Andriantsiferana, M.; Nakajima, T., IsCT, a Novel Cytotoxic Linear Peptide from Scorpion Opisthacanthus madagascariensis. Biochem. Bioph. Res. Co. 2001, 286 (4), 820-825.
168. Yu, K.; Kim, Y.; Kang, S.; Park, N.; Shin, J., Relationship between the tertiary structures of mastoparan B and its analogs and their lytic activities studied by NMR spectroscopy. J. Pept. Res. 2000, 55 (1), 51-62.
169. G Mignogna, M. S., G Kreil, and D Barra, Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J. 1993, 12 (12), 4829–4832.
170. Toshiyuki Miyata, F. T., Takashi Yoneya, Katsuhiro Yoshikawa, Sadaaki Iwanaga, Makoto Niwa, Toshifumi Takao, Yasutsugu Shimonishi, Antimicrobial Peptides, Isolated from Horseshoe Crab Hemocytes, Tachyplesin II, and Polyphemusins I and II: Chemical Structures and Biological Activity. J. Biochem. 1989 106 (4), 663-668.
171. Mandard, N.; Bulet, P.; Caille, A.; Daffre, S.; Vovelle, F., The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur. J. Biochem. 2002, 269 (4), 1190-1198.
172. Fahrner RL, D. T., Harwig SS, Lehrer RI, Eisenberg D, Feigon J., Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 1996, 3 (7), 543-550.
173. Laederach, A.; Andreotti, A. H.; Fulton, D. B., Solution and Micelle-Bound Structures of Tachyplesin I and Its Active Aromatic Linear Derivatives Biochemistry 2002, 41 (41), 12359-12368.
174. Tang, Y.-Q.; Yuan, J.; Ouml; sapay, G.; sapay, K.; Tran, D.; Miller, C. J.; Ouellette, A. J.; Selsted, M. E., A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated -Defensins. Science 1999, 286 (5439), 498-502.
175. Yin A, M. H., Grogan J, Yao Y, Troxler RF, Oppenheim FG., Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral. Biol. 2003 48 (5), 361-368.
176. Chernysh, S.; Kim, S. I.; Bekker, G.; Pleskach, V. A.; Filatova, N. A.; Anikin, V. B.; Platonov, V. G.; Bulet, P., Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (20), 12628-12632.
177. Lai, R.; Liu, H.; Lee, W. H.; Zhang, Y., A novel proline rich bombesin-related peptide (PR-bombesin) from toad Bombina maxima. Peptides 2002, 23 (3), 437-442.
178. Halverson, T.; Basir, Y. J.; Knoop, F. C.; Conlon, J. M., Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans[small star, filled]. Peptides 2000, 21 (4), 469-476.
179. Romeo, D.; Skerlavaj, B.; Bolognesi, M.; Gennaro, R., Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 1988, 263 (20), 9573-9575.
180. Kim, S. S.; Shim, M. S.; Chung, J.; Lim, D.-Y.; Lee, B. J., Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii. Peptides 2007, 28 (8), 1532-1539.
181. Simmaco, M.; Mignogna, G.; Barra, D., Antimicrobial peptides from amphibian skin: What do they tell us? Peptide Science 1998, 47 (6), 435-450.
指導教授 阮若屈、蔡惠旭
(Ruoh-chyu Ruaan、Hui-Hsu Gavin Tsai)
審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明