博碩士論文 92324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.231.21.123
姓名 陳悅芳(Yueh-Fang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 半導體光觸媒的製備及其在水分解反應之應用
(Preparation of Semiconductor Photocatalyst and its Application for Water Splitting Reaction)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 不同的光觸媒材料研究,近年來受到一些學者的討論。本研究之水分解反應主要可分為紫外光及可見光兩部分。我們探討InVO4、InTaO4、InNbO4、In6WO12、K4Nb6O17一系列光觸媒作為可見光之水分解製氫反應的研究,而紫外光部分是探討NaTaO3觸媒。這一系列的光觸媒主要是以固態反應法製備而成。我們改變了不同的製備條件(共觸媒金屬氧化物、氧化鎳含量、植入的金屬及經過氧化還原處理的效應),探討對水分解產生氫氣及氧氣活性的影響。觸媒的物化特性,以下列方法鑑定:X-光繞射分析 (X-ray diffraction),掃瞄式電子顯微鏡 (scanning electron microscopy), X-射線光電子譜 (X-ray photoelectron spectroscopy) 和UV-Vis吸收光譜 (Ultravillet-Visible spectroscopy)。
不同的觸媒製備方法明顯地影響觸媒的晶相與水分解活性。X-光繞射分析顯示所製備的InVO4、InTaO4、InNbO4、In6WO12、K4Nb6O17與NaTaO3觸媒,均具有良好的晶相。觀察SEM圖,In6WO12系列的觸媒,粒徑最小,約1~2 μm。而添加氧化鎳、氧化鈷或氧化釕於InVO4上時,可看到InVO4上有小洞產生。由UV-Vis吸收光譜得知,InVO4 能帶間隙為1.8 eV、InTaO4為2.7 eV、InNbO4為2.6 eV、In6WO12為2.6 eV、 K4Nb6O17為3.0 eV、NaTaO3為3.3 eV,所以這些觸媒是有足夠能力使水分解產生氫氣及氧氣的。
在InVO4觸媒,發現NiO具較佳的水分解活性,而0.3 wt.% NiO具有最高的活性,其產生氫氣和氧氣分別為750 μmolh-1gcat.-1和375 μmolh-1gcat.-1。在前處理的活化下對於觸媒的活性是有很大的幫助的。NiO/InVO4 於500oC下還原2小時,然後在室溫下氧化48小時,產生氫氣為896 μmolh-1gcat.-1。由上述結果得知,NiO/InVO4 觸媒的前處理過程扮演著獲得高水分解活性的重要角色。
對於InTaO4,我們也改變了不同的金屬氧化物作為載體,發現NiO有較佳的活性。其產生氫氣和氧氣分別為842 μmolh-1gcat.-1和420 μmolh-1gcat.-1。對於InNbO4也是發現NiO有較佳的活性。而經前處理的活化下,對於NiO/InTaO4 NiO/InNbO4觸媒的活性是沒有幫助的,反而使活性下降了。
對於In6WO12,我們改變了不同的金屬氧化物 (NiO, CoOx and RuOx) 於In6WO12上,發現RuO2有較佳的活性。其產生氫氣和氧氣分別為774 μmolh-1gcat.-1和365 μmolh-1gcat.-1。而觸媒在經氧化還原的前處理下,對活性有些微的增加。K4Nb6O17是我們新研究的觸媒。在沒有任何共觸媒的存在下,發現其較先前研究的觸媒佳。其產生氫氣和氧氣分別為839 μmolh-1gcat.-1和415 μmolh-1gcat.-1。
NaTaO3光觸媒在紫外光照射下,水分解產生氫氣和氧氣分別為1476 μmolh-1gcat.-1和738 μmolh-1gcat.-1。
摘要(英) Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, photocatalytic activities of InVO4, InTaO4, InNbO4, In6WO12, K4Nb6O17 catalysts for water splitting under visible light irradiation were investigated. Photocatalytic activities of NaTaO3 catalysts for water splitting were studied under UV light irradiation. The effect of different preparation parameters, such as type of cocatalyst and amount of NiO loading, doping metal and pretreatment process on the photocatalysis reaction was investigated. The photocatalysts was synthesized by solid-state reaction method using metal oxide as the starting materials. The catalysts were characterized by powder X-ray diffraction (XRD), scanning electron spectroscopy (SEM), ultraviolet-visible spectroscopy (UV-Vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic reaction was carried out in a Pyrex reactor with a 500 W halogen light as visible light source and 400 W high pressure mercury lamp as UV light source. All of the catalysts were fully crystallized. SEM results In6WO12 catalysts had the smallest particle size were ca. 1~2 μm. In addition, many pin-holes appeared on InVO4 particles, after loading NiO, CoOx and RuOx. The band gap of InVO4, InTaO4, InNbO4, In6WO12, K4NB6O17 and NaTaO3 were 1.8 eV, 2.7 eV, 2.6 eV, 2.6 eV, 3.0 eV and 3.3 eV, respectively, showing that these catalysts had ability to split water into H2 and O2.
For InVO4 catalyst, NiO was the best cocatalyst for water splitting, which gave the highest activity (750 μmolh-1gcat.-1 for H2 evolution and 375 μmolh-1gcat.-1 for O2) when the loading was 0.3 wt%. The pretreatment method had a great effect on the activity of the catalyst. The NiO/InVO4 catalyst which was reduced at 500oC for 2 h and oxidized at ambient condition for 48 h gave the highest activity with a rate of 896μmolh-1gcat.-1. It demonstrated that the pretreatment process plays a key role in creating high catalytic performance for the NiO/InVO4 catalyst.
For InTaO4 catalysts, we also have tested various metal oxides as the additive and NiO gave the highest activity. The yields of H2 and O2 on NiO-InTaO4 were 842 μmolh-1gcat.-1 and 420 μmolh-1gcat.-1, respectively. Similarly, NiO was found to be best catalyst on InNbO4 catalyst. However, the negative of reduction-oxidation treatment was observed on NiO/InTaO4 and NiO/InNbO4.
For In6WO12 catalyst, RuO2 additive gave the highest activity. The pretreatment method had a little effect on the activity of the catalyst. The yields of H2 and O2 were 774 μmolh-1gcat.-1 and 365 μmolh-1gcat.-1, respectively. K4Nb6O17 is a very active catalyst. The yields of H2 and O2 were 839 μmolh-1g cat.-1 and 415 μmolh-1g cat.-1, respectively.
Photocatalytic activities of La-NaTaO3 catalysts for water splitting were studied under UV light irradiation. The yields of H2 and O2 were 1476 μmolh-1gcat.-1 and 738 μmolh-1gcat.-1, respectively.
關鍵字(中) ★ 太陽能
★ 氫能源
★ 水分解
★ 光觸媒
關鍵字(英) ★ Photocatalyst
★ Water Splitting
★ hydrogen energy
★ solar energy
論文目次 Table of Contents
Abstract…………………………………………………………………...……...…….i
Table of Contents……………………………………………………….......................ii
List of Figures…..…………………………………………………………………….xi
List of Tables……..……………………………………………………………...…xxiv
Chapter 1. Introduction………………………….…………...……...…1
1.1 UV light response…………………..………………………..……………………2
1.2 Visible light response…………..………………………………………...….……3
Chapter 2. Literature review………………….…………………...…...4
2.1 Theory.......................................................................................................................4
2.1.1 Water splitting……………………………………………………………….4
2.1.2 Basis of photocatalytic reactions.....................................................................5
2.1.3 Processes on photocatalytic reactions.............................................................6
2.2 UV-light photocatalysts............................................................................................8
2.3 Visible light photocatalysts....................................................................................24
2.4 Reactor types………………………………………………..……………………37
2.5 Objectives and scope of this study.........................................................................38
Chapter 3. Experimental…...……….…………………………………39
3.1 Materials.................................................................................................................39
3.1.1 UV light…………………………………………………………………….39
3.1.2 Visible light...................................................................................................39
3.2 Preparation of InVO4……………………………………………………………..39
3.2.1 Different loading metals……………………………………………………40
3.2.2 Different amount of NiO loading…………………………………………..41
3.2.3 Different reduction–oxidation pretreatment………………………………..41
3.2.4 Different doping metal………….………………………………………….42
3.3 Preparation of InTaO4 ……………………………………………………………55
3.3.1 Different loading metal…………………………………………………….55
3.3.2 Different reduction-oxidation pretreatment………………………………...56
3.3.3 Different doping metal……………………………………………………..57
3.4 Preparation of InNbO4……………………………………………………………66
3.4.1 Different loading metal…………………………………………………….66
3.4.2 Different reduction-oxidation pretreatment………………………………...67
3.4.3 Different doping metal……………………………………………………..68
3.5 Preparation of In6WO12…………………………………………………………..77
3.5.1 Different loading metal…………………………………………………….77
3.5.2 Different reduction-oxidation pretreatment………………………………...78
3.6 Preparation of K4Nb6O17…………………………………………………………85
3.7 Preparation of NaTaO3…………………………………………………………...87
3.7.1 La doped…………………………………………………………………....87
3.8 Catalysts characterization………………………………………………………...89
3.8.1 X-ray diffraction (XRD)……………………………………………………89
3.8.2 Scanning electron microscopy (SEM) and SEM-EDS……………………..89
3.8.3 X-ray photoelectron spectroscopy (XPS)…………………..........................90
3.8.4 UV-Visible spectroscopy (UV-Vis)………………………….......................90
3.9 Photocatalytic reaction testing…………………………………………………....90
3.9.1 UV light response…………………………………………………………..90
3.9.2 Visible light response………………………………………………………91
Chapter 4. Water splitting under visible light irradiation with InVO4 photocatalysts……………………………………………..92
4.1 Introduction……………………………………………………………………....92
4.2 Effects of preparation conditions of catalysts……………………………………94
4.2.1 Effect of loading metal……………………………………………………..94
4.2.1.1 XRD……………………………………………………………….94
4.2.1.2 SEM………………………………………………………………..96
4.2.1.3 XPS………………………………………………………………...96
4.2.1.4 UV-Vis……………………………………………………………..98
4.2.1.5 Photocatalytic reaction testing……………………………………..99
4.2.2 Effects of various amount of NiO loading………………………………...113
4.2.2.1 XRD………………………………………………………………113
4.2.2.2 SEM and SEM-EDS……………………………………..……….114
4.2.2.3 UV-Vis……………………………………………………………116
4.2.2.4 Photocatalytic reaction testing……………………………………116
4.2.3 Effect of reduction–oxidation pretreatment................................................132
4.2.3.1 Pretreatment on NiO/InVO4, Co3O4/InVO4 and RuO2/InVO4.......132
4.2.3.1.1 XRD………………………………………………........132
4.2.3.1.2 SEM……………............................................................133
4.2.3.1.3 XPS…………………………………………………….134
4.2.3.1.4 UV-Vis………………………………………………….135
4.2.3.1.5 Photocatalytic reaction testing………………………….136
4.2.3.2 Pretreatment on different amount of NiO loading(NiO/InVO4)....148
4.2.3.2.1 XRD…………...........................................................….148
4.2.3.2.2 SEM…………............................................................….150
4.2.3.2.3 UV-Vis………........................................................…….150
4.2.3.2.4 Photocatalytic reaction testing………………….………151
4.2.3.3 Different pretreatment on NiO/InVO4…………………...……….162
4.2.3.3.1 XRD................................................................................162
4.2.3.3.2 SEM……............................................................……….163
4.2.3.3.3 XPS…….................................................................…….164
4.2.3.3.4 UV-Vis…………….........................................................165
4.2.3.3.5 Photocatalytic reaction testing…………………….……166
4.2.4 Effect of doping metal…………………………………………………….177
4.2.4.1 XRD……………………………………………………………...177
4.2.4.2 SEM and SEM-EDS………………………………………..…….178
4.2.4.3 UV-Vis……………………………………………………...…….178
4.2.4.4 Photocatalytic reaction testing……………………………………179
4.3 Effect of reaction conditions…………………………………………...……….189
4.3.1 Effect of light source……………………………………..……….189
4.3.2 Effect of light irradiation type…………………………………….190
4.3.3 Effect of calcinations……………………………………………...190
4.3.4 Effect of the times of reaction.........................................................191
4.4 Conclusion………………………………………………………………………195
Chapter 5. Water splitting under visible light irradiation with InTaO4
photocatalysts……………………………………………197
5.1 Introduction………………………………………………………………….….197
5.2 Effect of preparation conditions of catalysts………………………………...….199
5.2.1 Effect of loading metal……………………………………………………199
5.2.1.1 XRD……………………………………………………………...199
5.2.1.2 SEM………………………………………………………………201
5.2.1.3 XPS……………………………………………………………….201
5.2.1.4 UV-Vis……………………………………………………………202
5.2.1.5 Photocatalytic reaction testing……………………………………203
5.2.2 Effect of reaction-oxidation pretreatment………………………………...213
5.2.2.1 XRD……………………………………………………………...213
5.2.2.2 SEM…………………………………………………………...….214
5.2.2.3 XPS……………………………………………………………….215
5.2.2.4 UV-Vis………………………………………………………...….215
5.2.2.5 Photocatalytic reaction testing……………………………………216
5.2.3 Effect of doping metal…………………………………………………….226
5.2.3.1 XRD………………………………………………………..…….226
5.2.3.2 SEM and SEM-EDS……………………………………………..227
5.2.3.3 UV-Vis……………………………………………………………227
5.2.3.4 Photocatalytic reaction testing……………………………………228
5.3 Conclusion………………………………………………………………………238
Chapter 6. Water splitting under visible light irradiation with InNbO4 photocatalysts…...……………………….…….240
6.1 Introduction……………………………………………………………………..240
6.2 Effect of preparation conditions of catalysts……………………………………242
6.2.1 Effect of loading metal……………………………………………………242
6.2.1.1 XRD……………………………………………………………...242
6.2.1.2 SEM………………………………………………………………244
6.2.1.3 XPS…………………………………………………………….....244
6.2.1.4 UV-Vis…………………………………………………...……….245
6.2.1.5 Photocatalytic reaction testing…………………………………....246
6.2.2 Effect of reaction-oxidation pretreatment……………………………..….259
6.2.2.1 XRD……………………………………………………………...259
6.2.2.2 SEM…………………………………………………………...….260
6.2.2.3 XPS……………………………………………………………….261
6.2.2.4 UV-Vis……………………………………………………………261
6.2.2.5 Photocatalytic reaction testing……………………………………262
6.2.3 Effect of doping metal…………………………………………………….272
6.2.3.1 XRD……………………………………………………………...272
6.2.3.2 SEM and SEM-EDS……………………………………………...273
6.2.3.3 UV-Vis……………………………………………………………273
6.2.3.4 Photocatalytic reaction testing……………………………………274
6.3 Conclusion………………………………………………………………………284
Chapter 7. Water splitting under visible light irradiation with
In6WO12 photocatalysts…………………………………286
7.1 Introduction……………………………………………………………………..286
7.2 Effect of preparation conditions of catalysts……………………………………288
7.2.1 Effect of loading metal……………………………………………………288
7.2.1.1 XRD……………………………………………………………...288
7.2.1.2 SEM……………………………………….…………………..….289
7.2.1.3 XPS……………………………………………………………….290
7.2.1.4 UV-Vis……………………………………………………………291
7.2.1.5 Photocatalytic reaction testing……………………………………292
7.2.2 Effect of reaction-oxidation pretreatment……………………………..….307
7.2.2.1 XRD…………………………………………………………..….307
7.2.2.2 SEM………………………………………………………………308
7.2.2.3 XPS……………………………………………………………….309
7.2.2.4 UV-Vis……………………………………………………………309
7.2.2.5 Photocatalytic reaction testing……………………………………310
7.3 Conclusion…………………………………………………………………...….320
Chapter 8. Water splitting under visible light irradiation with
K4Nb6O17 photocatalysts………………………….…….322
8.1 Introduction…………………………………………………………….……….322
8.2 XRD…………………………………………………………………………….324
8.3 SEM……………………………………………………………………………..324
8.4 XPS ……………………………………………………………………………..324
8.5 UV-Vis…………………………………………………………………….…….325
8.6 Photocatalytic reaction testing……………………………………………..……326
8.7 Conclusion……………………………………………………………...……….334
Chapter 9. Water splitting under UV light irradiation with NaTaO3
photocatalysts……..……………………………………..335
9.1 Introduction…………………………………………………………………..…335
9.2 Effect of La doping……………………………………………………………...337
9.2.1 XRD………………………………………………………………………337
9.2.2 SEM……………………………………………………………………….337
9.2.3 XPS………………………………………………………………………..337
9.2.4 UV-Vis…………………………………………………………………….338
9.3 Photocatalytic reaction testing………………………………………….……….339
9.4 Conclusion………………………………………………………………………350
Chapter 10. Conclusions……………………………………………..351
Literature cited……………………………………………………….355
List of Figures
Figure 2.1 Types of photocatalytic reaction…………………...………………………4
Figure 2.2 Reaction schemes for semiconductor photocatalysts………………………6
Figure 2.3 Process occurring in semiconductor photocatalysts under photoexcieation.7
Figure 2.4 Process in photocatalytic reaction……………………………………….…7
Figure 2.5 The concept of hydrogen production from direct water splitting at high temperature using a mixed conducting membrane………………….……..9
Figure 2.6 Reaction cells: (a) inner irradiation type, (b) side window type and (c) top window type……………………………………………………………...37
Figure 3.1 The flow chart of synthesis of NiO-InVO4……………………………….44
Figure 3.2 The flow chart of synthesis of Co3O4-InVO4……………………………..45
Figure 3.3 The flow chart of synthesis of RuO2-InVO4……………………………...46
Figure 3.4 The flow chart of synthesis of various NiO loading on InVO4……….…..47
Figure 3.5 The flow chart of synthesis of NiO-InVO4 with pretreatment…………....48
Figure 3.6 The flow chart of synthesis of Co3O4-InVO4 with pretreatment………....49
Figure 3.7 The flow chart of synthesis of RuO2-InVO4 with pretreatment…………..50
Figure 3.8 The flow chart of synthesis of various NiO loading on InVO4 with pretreatment……………………………………………………………....51
Figure 3.9 The flow chart of synthesis of NiO-InVO4 with different pretreatment….52
Figure 3.10 The flow chart of synthesis of In0.8Ni0.2VO4…………………………….53
Figure 3.11 The flow chart of synthesis of In0.8Ag0.2VO4……………………………54
Figure 3.12 The flow chart of synthesis of NiO-InTaO4……………………………..58
Figure 3.13 The flow chart of synthesis of Co3O4-InTaO4…………………………...59
Figure 3.14 The flow chart of synthesis of RuO2-InTaO4…………………………....60
Figure 3.15 The flow chart of synthesis of NiO-InTaO4 with pretreatment……….....61
Figure 3.16 The flow chart of synthesis of Co3O4-InTaO4 with pretreatment……….62
Figure 3.17 The flow chart of synthesis of RuO2-InTaO4 with pretreatment………...63
Figure 3.18 The flow chart of synthesis of In0.8Ni0.2TaO4……………………………64
Figure 3.19 The flow chart of synthesis of In0.8Ag0.2TaO4……………………….…..65
Figure 3.20 The flow chart of synthesis of NiO-InNbO4…………………………….69
Figure 3.21 The flow chart of synthesis of Co3O4-InNbO4…………………………..70
Figure 3.22 The flow chart of synthesis of RuO2-InNbO4……………………….…..71
Figure 3.23 The flow chart of synthesis of NiO-InNbO4 with pretreatment………....72
Figure 3.24 The flow chart of synthesis of Co3O4-InNbO4 with pretreatment………73
Figure 3.25 The flow chart of synthesis of RuO2-InNbO4 with pretreatment………..74
Figure 3.26 The flow chart of synthesis of In0.8Ni0.2NbO4……………………….…..75
Figure 3.27 The flow chart of synthesis of In0.8Ag0.2NbO4..........................................76
Figure 3.28 The flow chart of synthesis of NiO-In6WO12…………………………...79
Figure 3.29 The flow chart of synthesis of Co3O4-In6WO12……………………...….80
Figure 3.30 The flow chart of synthesis of RuO2-In6WO12………………………….81
Figure 3.31 The flow chart of synthesis of NiO-In6WO12 with pretreatment………..82
Figure 3.32 The flow chart of synthesis of Co3O4-In6WO12 with pretreatment……...83
Figure 3.33 The flow chart of synthesis of RuO2-In6WO12 with pretreatment……....84
Figure 3.34 The flow chart of synthesis of K4Nb6O17…………………………….….86
Figure 3.35 The flow chart of synthesis of La doping in NaTaO3………………...…88
Figure 4.1 The XRD patterns of InVO4 prepared with various loading metal. (A) InVO4, (B) 1 wt% NiO/InVO4, (C) 1 wt% Co3O4/InVO4, (D) 1 wt% RuO2/InVO4.............................................................................................102
Figure 4.2 The SEM micrographs of InVO4 prepared with various loading metal. (A) InVO4, (B) 1 wt% NiO/InVO4………………………………………….103
Figure 4.3 The SEM micrographs of InVO4 prepared with various loading metal. (C) 1 wt% Co3O4/InVO4, (D) 1 wt% RuO2/InVO4……………...………….104
Figure 4.4 The XPS spectrum of InVO4 samples as prepared (a) and after reaction (b). (A), (B), (C) NiO/InVO4, (D), (E), (F) Co3O4/InVO4…………….….....105
Figure 4.5 The UV-Vis spectrum of InVO4 prepared with various loading metal. (A) InVO4, (B) 1 wt% Co3O4/ InVO4, (C) 1 wt% NiO/InVO4, (D) 1 wt% RuO2/InVO4………........................................................................…….108
Figure 4.6 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL (A) InVO4, (B) 1.0 wt% NiO/InVO4, (C) 1.0 wt% Co3O4/InVO4, (D) 1.0 wt% RuO2/InVO4…………………………………………………………….109
Figure 4.7 The wavelength-current spectra of 500W halogen lamp probed near reactor was about 143 μW/cm2 for λ is from 300 to 900 nm………..………….111
Figure 4.8 The XRD patterns of the InVO4 photocatalysts before (a) and after (b) photocatalytic reaction……………………………………….………….112
Figure 4.9 The XRD patterns of InVO4 prepared with various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4, (C) 0.3 wt% NiO/InVO4, (D) 0.5 wt% NiO/InVO4, (E) 1.0 wt% NiO/InVO4, (F) 2.0 wt% NiO/InVO4…..118
Figure 4.10 The SEM micrographs of InVO4 prepared with various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4…………...................….119
Figure 4.11 The SEM micrographs of InVO4 prepared with various amount of NiO loading. (C) 0.3 wt% NiO/InVO4, (D) 0.5 wt% NiO/InVO4…………..120
Figure 4.12 The SEM micrographs of InVO4 prepared with various amount of NiO loading. (E) 1.0 wt% NiO/InVO4, (F) 2.0 wt% NiO/InVO4……..……121
Figure 4.13 The SEM-EDS spectra of InVO4 loaded with 0.1 wt% NiO…………..122
Figure 4.14 The SEM-EDS spectra of InVO4 loaded with 0.3 wt% NiO……….….123
Figure 4.15 The SEM-EDS spectra of InVO4 loaded with 0.5 wt% NiO……….….124
Figure 4.16 The SEM-EDS spectra of InVO4 loaded with 1.0 wt% NiO…………..125
Figure 4.17 The SEM-EDS spectra of InVO4 loaded with 2.0 wt% NiO…………..126
Figure 4.18 The UV-Vis spectrum of InVO4 prepared with various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4, (C) 0.3 wt% NiO/InVO4, (D) 0.5 wt% NiO/InVO4, (E) 1.0 wt% NiO/InVO4, (F) 2.0 wt% NiO/InVO4………........................................................................…….128
Figure 4.19 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL. (A) InVO4, (B) 0.1 wt% NiO/InVO4, (C) 0.3 wt% NiO/InVO4, (D) 0.5 wt% NiO/InVO4, (E) 1.0 wt% NiO/InVO4, (F) 2.0 wt% NiO/InVO4……...........……….129
Figure 4.20 Dependence of the photocatalytic activity for water splitting over NiO/InVO4 upon the amount of NiO loaded ; under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL………………………..131
Figure 4.21 The XRD patterns of InVO4 prepared with pretreatment on various loading metal. (A) InVO4 (B) NiO/InVO4 R500-O200 (C) Co3O4/InVO4 R500-O200 (D) RuO2/InVO4 R400-O200........................…………….139
Figure 4.22 The SEM micrographs of InVO4 prepared with pretreatment on various loading metal. (A) InVO4, (B) NiO/InVO4 R500-O200………………140
Figure 4.23 The SEM micrographs of InVO4 prepared with pretreatment on various loading metal. (C) Co3O4/InVO4 R500-O200, (D) RuO2/InVO4 R500-O200…........................................................................………….141
Figure 4.24 The XPS spectra of InVO4 prepared with pretreatment on various loading metal. (A), (B), (C) NiO/InVO4 R500-O200: as prepared (a) and after reaction (b); (D), (E), (F) Co3O4/InVO4 R500-O200………………….142
Figure 4.25 The UV-Vis spectra of InVO4 prepared with pretreatment on various loading metal. (A) InVO4, (B) NiO/InVO4 R500-O200, (C) Co3O4/InVO4 R500-O200, (D) RuO2/InVO4 R400-O200.......................…………….145
Figure 4.26 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL. (A) InVO4, (B) NiO/InVO4 R500-O200, (C) Co3O4/InVO4 R500-O200, (D) RuO2/InVO4 R400-O200…………….........................................................................146
Figure 4.27 The XRD patterns of InVO4 prepared with pretreatment on various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4 R500-O200, (C) 0.3 wt% NiO/InVO4 R500-O200, (D) 0.5 wt% NiO/InVO4 R500-O200, (E) 1.0 wt% NiO/InVO4 R500-O200, (F) 2.0 wt% NiO/InVO4 R500-O200…..........................................................................………….154
Figure 4.28 The SEM micrographs of InVO4 prepared with pretreatment on various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4 R500-O200…………………………………………………………….155
Figure 4.29 The SEM micrographs of InVO4 prepared with pretreatment on various amount of NiO loading. (C) 0.3 wt% NiO/InVO4 R500-O200, (D) 0.5 wt% NiO/InVO4 R500-O200…............................................………….156
Figure 4.30 The SEM micrographs of InVO4 prepared with pretreatment on various amount of NiO loading. (E) 1.0 wt% NiO/InVO4 R500-O200, (F) 2.0 wt% NiO/InVO4 R500-O200…………….............................................157
Figure 4.31 The UV-Vis spectra of InVO4 prepared with pretreatment on various amount of NiO loading. (A) InVO4, (B) 0.1 wt% NiO/InVO4 R500-O200, (C) 0.3 wt% NiO/InVO4 R500-O200, (D) 0.5 wt% NiO/InVO4 R500-O200, (E) 1.0 wt% NiO/InVO4 R500-O200, (F) 2.0 wt% NiO/InVO4 R500-O200……………......................................................158
Figure 4.32 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL. (A) InVO4, (B) 0.1 wt% NiO/InVO4 R500-O200,(C) 0.3 wt% NiO/InVO4 R500-O200, (D) 0.5 wt% NiO/InVO4 R500-O200,(E) 1.0 wt% NiO/InVO4 R500-O200, (F) 2.0 wt% NiO/InVO4 R500-O200...........…………….159
Figure 4.33 Dependence of the photocatalytic activity for water splitting over NiO/InVO4 with pretreatment upon the amount of NiO loaded under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL……..…….161
Figure 4.34 The XRD patterns of 1 wt% NiO/InVO4 prepared with different pretreatment. (A) InVO4, (B) 1 wt% NiO/InVO4 R500-O200, (C) 1 wt% NiO/InVO4 R500-Oair.......................................…………................….168
Figure 4.35 The SEM micrographs of 1 wt% NiO/InVO4 prepared with different pretreatment. (A) InVO4, (B) 1 wt% NiO/InVO4 R500-O200…..…….169
Figure 4.36 The SEM micrographs of 1 wt% NiO/InVO4 prepared with different pretreatment. (C) 1 wt% NiO/InVO4 R500-Oair…...............………….170
Figure 4.37 The XPS spectra of 1 wt% NiO/InVO4 prepared with different pretreatment: surface (a) bulk (b). (A), (B), (C) 1 wt% NiO/InVO4 R500-O200; (D), (E), (F) 1 wt% NiO/InVO4 R500-Oair…..………….171
Figure 4.38 The UV-Vis spectra of 1 wt% NiO/InVO4 prepared with different pretreatment. (A) InVO4, (B) 1 wt% NiO/InVO4 R500-O200, (C) 1 wt% NiO/InVO4 R500-Oair………......................................................…….174
Figure 4.39 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL. (A) InVO4, (B) 1 wt% NiO/InVO4 R500-O200, (C) 1 wt% NiO/InVO4 R500-Oair.….175
Figure 4.40 The XRD patterns of InVO4 prepared with various doping metal. (A) InVO4, (B) In0.8Ag0.2VO4, (C) In0.8Ni0.2VO4……………….………….180
Figure 4.41 The SEM micrographs of InVO4 prepared with various loading metal. (A) InVO4, (B) In0.8Ag0.2VO4…………………………………..………….181
Figure 4.42 The SEM micrographs of InVO4 prepared with various doping metal. (C) In0.8Ni0.2VO4………………………………………………..………….182
Figure 4.43 The SEM-EDS spectra of InVO4 doped with Ag…………………...….183
Figure 4.44 The SEM-EDS spectra of InVO4 doped with Ni………………………184
Figure 4.45 The UV-Vis spectra of InVO4 prepared with various loading metal. (A) InVO4, (B) In0.8Ag0.2VO4, (C) In0.8Ni0.2VO4…………………………..186
Figure 4.46 Photocatalytic gas evolutions from pure water using InVO4 samples under visible light irradiation. Catalyst: 0.14 g; pure H2O: 50mL. (A) InVO4, (B) In0.8Ag0.2VO4, (C) In0.8Ni0.2VO4…………………………………...….187
Figure 5.1 The XRD patterns of InTaO4 prepared with various loading metal. (A) InTaO4, (B) 1 wt% NiO/InTaO4, (C) 1 wt% Co3O4/InTaO4, (D) 1 wt% RuO2/InTaO4……………...…………………………………………….205
Figure 5.2 The SEM micrographs of InTaO4 prepared with various loading metal. (A) InTaO4, (B) 1 wt% NiO/InTaO4………………………………………...206
Figure 5.3 The SEM micrographs of InTaO4 prepared with various loading metal. (C) 1 wt% Co3O4/InTaO4, (D) 1 wt% RuO2/InTaO4…………………….….207
Figure 5.4 The XPS spectrum of InTaO4 loaded with 1.0 wt% NiO……………….208
Figure 5.5 The UV-Vis spectrum of InTaO4 prepared with various loading metal. (A) InTaO4 (B) 1 wt% NiO/InTaO4 (C) 1 wt% Co3O4/InTaO4 (D) 1 wt% RuO2/InTaO4………………………………………………………...….210
Figure 5.6 Photocatalytic gas evolutions from pure water using InTaO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InTaO4, (B) 1.0 wt% NiO/InTaO4, (C) 1.0 wt% Co3O4/InTaO4, (D) 1.0 wt% RuO2/InTaO4……………………………………………………....211
Figure 5.7 The XRD patterns of InTaO4 prepared with pretreatment on various loading metal. (A) InTaO4, (B) 1 wt% NiO/InTaO4 R500-O200, (C) 1 wt%Co3O4/InTaO4 R500-O200, (D) 1 wt% RuO2/InTaO4 R400-O200...218
Figure 5.8 The SEM micrographs of InTaO4 prepared with pretreatment on various loading metal. (A) InTaO4, (B) 1 wt% NiO/InTaO4 500-O200………....219
Figure 5.9 The SEM micrographs of InTaO4 prepared with pretreatment on various loading metal. (C) 1 wt%Co3O4/InTaO4 R500-O200, (D) 1 wt% RuO2/InTaO4 R400-O200………....................................................…….220
Figure 5.10 The XPS spectrum of InTaO4 prepared with pretreatment on 1.0 wt% NiO. (A), (B), (C), (D) NiO/InTaO4 R500-O200………….......................….221
Figure 5.11 The UV-Vis spectrum of InTaO4 prepared with pretreatment on various loading metal. (A) InTaO4, (B) 1 wt% NiO/InTaO4 R500-O200, (C) 1 wt%Co3O4/InTaO4 R500-O200, (D) 1 wt% RuO2/InTaO4 R400-O200.............................................................................................223
Figure 5.12 Photocatalytic gas evolutions from pure water using InTaO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InTaO4, (B) 1.0 wt% NiO/InTaO4 R500-O200, (C) 1.0 wt% Co3O4/InTaO4 R500-O200, (D) 1.0 wt% RuO2/InTaO4 R400-O200….224
Figure 5.13 The XRD patterns of InTaO4 prepared with various doping metal. (A) InTaO4, (B) In0.8Ag0.2TaO4, (C) In0.8Ni0.2TaO4…………………..…….229
Figure 5.14 The SEM micrographs of InTaO4 prepared with various doping metal. (A) InTaO4, (B) In0.8Ag0.2TaO4…………………………………………….230
Figure 5.15 The SEM micrographs of InTaO4 prepared with various doping metal. (C) In0.8Ni0.2TaO4…………………………………………………………..231
Figure 5.16 The SEM-EDS spectra of InTaO4 doped with Ag…………………...…232
Figure 5.17 The SEM-EDS spectra of InTaO4 doped with Ni……………..……….233
Figure 5.18 The UV-Vis spectrum of InTaO4 prepared with various doping metal. (A) InTaO4, (B) In0.8Ag0.2TaO4, (C) In0.8Ni0.2TaO4……………...................235
Figure 5.19 Photocatalytic gas evolutions from pure water using InTaO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InTaO4, (B) In0.8Ag0.2TaO4, (C) In0.8Ni0.2TaO4…………………..…….236
Figure 6.1 The XRD patterns of InNbO4 prepared with various loading metal. (A) InNbO4, (B) 1 wt% NiO/InNbO4, (C) 1 wt% Co3O4/InNbO4, (D) 1 wt% RuO2/InNbO4…………......................................................................….249
Figure 6.2 The SEM micrographs of InNbO4 prepared with various loading metal. (A) InNbO4, (B) 1 wt% NiO/InNbO4…........................................………….250
Figure 6.3 The SEM micrographs of InNbO4 prepared with various loading metal. (C) 1 wt% Co3O4/InNbO4, (D) 1 wt% RuO2/InNbO4……...............……….251
Figure 6.4 The XPS spectrum of InNbO4 as prepared (a) and after water splitting reaction (b) ……….........................................................................…….252
Figure 6.5 The XPS spectrum of InNbO4 loaded with 1.0 wt% NiO……………….254
Figure 6.6 The UV-Vis spectrum of InNbO4 prepared with various loading metal. (A) InNbO4 (B) 1 wt% Co3O4/InNbO4 (C) 1 wt% NiO/InN0bO4 (D) 1 wt% RuO2/InNbO4…………......................................................................….256
Figure 6.7 Photocatalytic gas evolutions from pure water using InNbO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InNbO4, (B) 1.0 wt% NiO/InNbO4, (C) 1.0 wt% Co3O4/InNbO4, (D) 1.0 wt% RuO2/InNbO4……………………………………………………..…….257
Figure 6.8 The XRD patterns of InNbO4 prepared with pretreatment on various loading metal. (A) InNbO4, (B) 1 wt% NiO/InNbO4 R500-O200, (C) 1 wt% Co3O4/InNbO4 R500-O200, (D) 1 wt% RuO2/InNbO4 R400-O200...............................................................................................264
Figure 6.9 The SEM micrographs of InNbO4 prepared with pretreatment on various loading metal. (A) InNbO4, (B) 1 wt% NiO/InNbO4 R500-O200…….265
Figure 6.10 The SEM micrographs of InNbO4 prepared with pretreatment on various loading metal. (C) 1 wt%Co3O4/InNbO4 R500-O200, (D) 1 wt% RuO2/InNbO4 R400-O200……………..................................................266
Figure 6.11 The XPS spectrum of InNbO4 prepared with pretreatment on 1.0 % NiO. (A), (B), (C), (D) NiO/InNbO4 R500-O200……......................……….267
Figure 6.12 The UV-Vis spectrum of InNbO4 prepared with pretreatment on various loading metal. (A) InNbO4, (B) 1 wt% Co3O4/InNbO4 R500-O200, (C) 1 wt% RuO2/InNbO4 R400-O200, (D) 1 wt% NiO/InNbO4 R500-O200.............................................................................................269
Figure 6.13 Photocatalytic gas evolutions from pure water using InNbO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InNbO4, (B) 1.0 wt% NiO/InNbO4 R500-O200, (C) 1.0 wt% Co3O4/InNbO4 R500-O200, (D) 1.0 wt% RuO2/InNbO4 R400-O200...270
Figure 6.14 The XRD patterns of InNbO4 prepared with various doping metal. (A) InNbO4, (B) In0.8Ag0.2NbO4, (C) In0.8Ni0.2NbO4…………………...….275
Figure 6.15 The SEM micrographs of InNbO4 prepared with various doping metal. (A) InNbO4, (B) In0.8Ag0.2NbO4………………………………………..….276
Figure 6.16 The SEM micrographs of InNbO4 prepared with various doping metal. (C) In0.8Ni0.2NbO4……....................................................................……….277
Figure 6.17 The SEM-EDS spectra of InNbO4 doped with Ag…………….……….278
Figure 6.18 The SEM-EDS spectra of InNbO4 doped with Ni…………….……….279
Figure 6.19 The UV-Vis spectrum of InNbO4 prepared with various doping metal. (A) InNbO4, (B) In0.8Ag0.2NbO4, (C) In0.8Ni0.2NbO4…...............………….281
Figure 6.20 Photocatalytic gas evolutions from pure water using InNbO4 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) InNbO4, (B) In0.8Ag0.2NbO4, (C) In0.8Ni0.2NbO4………...............…….282
Figure 7.1 The XRD patterns of In6WO12 prepared with various loading metal. (A) In6WO12, (B) 1 wt% NiO/In6WO12, (C) 1 wt% Co3O4/In6WO12, (D) 1 wt% RuO2/In6WO12……………………………………………………….….295
Figure 7.2 The SEM micrographs of In6WO12 prepared with various loading metal. (A) In6WO12, (B) 1 wt% NiO/In6WO12………………………….………….296
Figure 7.3 The SEM micrographs of In6WO12 prepared with various loading metal. (C) 1 wt% Co3O4/In6WO12, (D) 1 wt% RuO2/In6WO12………............…….297
Figure 7.4 The XPS spectrum of In6WO12 as prepared (a) and after water splitting reaction (b) …………………………………………………….……….298
Figure 7.5 The XPS spectrum of In6WO12 loaded with 1.0 wt% NiO………..…….300
Figure 7.6 The XPS spectrum of In6WO12 loaded with 1.0 wt% Co3O4………..….302
Figure 7.7 The UV-Vis spectrum of In6WO12 prepared with various loading metal. (A) In6WO12, (B) 1 wt% Co3O4/In6WO12, (C) 1 wt% NiO/In6WO12, (D) 1 wt% RuO2/In6WO12…………………………………………………….…….304
Figure 7.8 Photocatalytic gas evolutions from pure water using In6WO12 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) In6WO12, (B) 1.0 wt% NiO/In6WO12, (C) 1.0 wt% Co3O4/In6WO12, (D) 1.0 wt% RuO2/In6WO12………………………………………….………….305
Figure 7.9 The XRD patterns of In6WO12 prepared with pretreatment on various loading metal. (A) In6WO12, (B) 1 wt% NiO/In6WO12 R500-O200, (C) 1 wt% Co3O4/In6WO12 R500-O200, (D) 1 wt% RuO2/In6WO12 R400-O200...............................................................................................312
Figure 7.10 The SEM micrographs of In6WO12 prepared with pretreatment on various loading metal. (A) In6WO12, (B) 1 wt% NiO/ In6WO12 500-O200…....313
Figure 7.11 The SEM micrographs of In6WO12 prepared with pretreatment on various loading metal. (C) 1 wt% Co3O4/In6WO12 R500-O200, (D) 1 wt% RuO2/In6WO12 R400-O200………………………………...………….314
Figure 7.12 The XPS spectrum of In6WO12 prepared with pretreatment on 1.0 % NiO. (A), (B), (C), (D) NiO/ In6WO12 R500-O200…………………………315
Figure 7.13 The UV-Vis spectrum of In6WO12 prepared with pretreatment on various loading metal. (A) In6WO12, (B) 1 wt% Co3O4/In6WO12 R500-O200, (C) 1 wt% NiO/In6WO12 R500-O200, (D) 1 wt% RuO2/In6WO12 R500-O200…………………………………………………………….317
Figure 7.14 Photocatalytic gas evolutions from pure water using In6WO12 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL. (A) In6WO12, (B) 1.0 wt% NiO/In6WO12 R500-O200, (C) 1.0 wt% Co3O4/In6WO12 R500-O200, (D) 1.0 wt% RuO2/In6WO12 R400-O200…………………………………………………………….318
Figure 8.1 The XRD patterns of K4Nb6O17 as prepared…………………………….327
Figure 8.2 The SEM micrographs of K4Nb6O17 as prepared……………………….328
Figure 8.3 The XPS spectrum of K4Nb6O17 as prepared………………………...….329
Figure 8.4 The UV-Vis spectrum of K4Nb6O17 as prepared………………………...331
Figure 8.5 Photocatalytic gas evolutions from pure water using K4Nb6O17 samples under visible light irradiation. Catalyst: 0.14g; pure H2O: 50mL…...….332
Figure 9.1 The XRD patterns of NaTaO3 as prepared and doped with La. (A) NaTaO3, (B) NaTaO3-La………....................................................................…….340
Figure 9.2 The SEM micrographs NaTaO3 as prepared and doped with La. (A) NaTaO3, (B) NaTaO3-La………………………………………….…….341
Figure 9.3 The XPS spectrum of NaTaO3 as prepared………………………..…….342
Figure 9.4 The XPS spectrum of NaTaO3 doped with La…………………….…….344
Figure 9.5 The UV-vis spectrum of NaTaO3 as prepared and doped with lanthanum……………………………………………………………….346
Figure 9.6 Photocatalytic gas evolutions from pure water using NaTaO3: La samples under UV light irradiation. Catalyst: 0.5g; pure H2O 800mL…….…….347
Figure 9.7 The wavelength-current spectra of 400W high pressure mercury lamp probed near reactor was about 19 mW/cm2 for λ is from 300nm to 700 nm……………………………………………………………………….349
List of Tables
Table 2.1 Literature reviewed for the photocatalytic activity under UV irradiation....22
Table 2.2 Literature reviewed for the photocatalytic activity under visible light irradiation………………………………………….....................................33
Table 4.1 The XPS binding energy values (eV) of 1 wt% NiO/InVO4 photocatalysts and the standard samples……………………………………..………….106
Table 4.2 The XPS binding energy values (eV) of 1 wt% Co3O4/InVO4 photocatalysts and the standard samples…………………………………………….….107
Table 4.3 Photocatalytic water splitting on InVO4 prepared with various loading metal………………………………………………………..…………….110
Table 4.4 The nominal and actual loading of NiO on InVO4 samples…..………….127
Table 4.5 Photocatalytic water splitting on InVO4 prepared with various amount of NiO loading…………………………………………………...………….130
Table 4.6 The XPS binding energy values (eV) of NiO/InVO4 with pretreatment photocatalysts and the standard samples………………………………..143
Table 4.7 The XPS binding energy values (eV) of C3O4/InVO4 with pretreatment and the standard samples………………………………………..…………….144
Table 4.8 Photocatalytic water splitting on InVO4 prepared with pretreatment on various loading metal…………………………………………………….147
Table 4.9 Photocatalytic water splitting on InVO4 prepared with pretreatment on various amount of NiO loading………………………………..…………160
Table 4.10 The XPS binding energy values (eV) of 1% NiO/InVO4 R500-O200 on various condition and the standard samples…………………………….172
Table 4.11 The XPS binding energy values (eV) of 1% NiO/InVO4 R500-Oair on various condition and the standard samples…………………………….173
Table 4.12 Photocatalytic water splitting on 1% NiO/InVO4 prepared with various pretreatment……………………………………………….…………….176
Table 4.13 The nominal and actual amount of doped with Ag and Ni in InVO4. (a) doped-Ag in InVO4 (b) doped-Ni in InVO4…………………………….185
Table 4.14 Photocatalytic water splitting on InVO4 prepared with various doping metal…………………………………………………………………….188
Table 4.15 Photocatalytic water splitting on 1 wt% NiO/InVO4 reacted with various light source…………………………………………………..………….193
Table 4.16 Photocatalytic water splitting on InVO4 reacted with various light type...........................................................................................................193
Table 4.17 Photocatalytic water splitting on InVO4 prepared with various frequency of calcinations……………………………………………………………...194
Table 4.18 Photocatalytic water splitting on InVO4 prepared with various times of reactions………………………………………………………………...194
Table 5.1 The XPS binding energy values (eV) of 1 wt% NiO/InTaO4 photocatalysts and the standard samples………………………………………….…….209
Table 5.2 Photocatalytic water splitting on InTaO4 prepared with various loading metal...........................................................................................................212
Table 5.3 The XPS binding energy values (eV) of 1 wt% NiO/InTaO4 R500-O200 photocatalysts and the standard samples………………………….…….222
Table 5.4 Photocatalytic water splitting on InTaO4 prepared with pretreatment on various loading metal…………………………………………………….225
Table 5.5 The nominal and actual amount of doped with Ag and Ni in InTaO4 (a) doped-Ag in InTaO4 (b) doped-Ni in InTaO4……………………………234
Table 5.6 Photocatalytic water splitting on InTaO4 prepared with various doping metal……………………………………………………………………...237
Table 6.1 The XPS binding energy values (eV) of InNbO4 photocatalysts and the standard samples…………………………………………….………….253
Table 6.2 The XPS binding energy values (eV) of 1 wt% NiO/InNbO4 photocatalysts and the standard samples…………………………………………….….255
Table 6.3 Photocatalytic water splitting on InNbO4 prepared with various loading metal…………………………………………………………..………….258
Table 6.4 The XPS binding energy values (eV) of 1 wt% NiO/InNbO4 R500-O200 photocatalysts and the standard samples…………………….………….268
Table 6.5 Photocatalytic water splitting on InNbO4 prepared with pretreatment on various loading metal…………………………………………………….271
Table 6.6 The nominal and actual amount of doped with Ag and Ni in InNbO4. (a) doped-Ag in InNbO4 (b) doped-Ni in InNbO4…………………………...280
Table 6.7 Photocatalytic water splitting on InNbO4 prepared with various doping metal……………………………………………………………………...283
Table 7.1 The XPS binding energy values (eV) of In6WO12 photocatalysts and the standard samples……………………………………………….……….299
Table 7.2 The XPS binding energy values (eV) of 1 wt% NiO/In6WO12 photocatalysts and the standard samples…………………………………………….….301
Table 7.3 The XPS binding energy values (eV) of 1 wt% Co3O4/ In6WO12 photocatalysts and the standard samples……………………….……….303
Table 7.4 Photocatalytic water splitting on In6WO12 prepared with various loading metal………………………………………………………..…………….306
Table 7.5 The XPS binding energy values (eV) of 1 wt% NiO/In6WO12 R500-O200 photocatalysts and the standard samples…………………….………….316
Table 7.6 Photocatalytic water splitting on In6WO12 prepared with pretreatment on various loading metal…………………………………………………….319
Table 8.1 The XPS binding energy values (eV) of K4Nb6O17 photocatalysts and the standard samples…………………………………………….………….330
Table 8.2 Photocatalytic water splitting on K4Nb6O17 as prepared…………...…….333
Table 9.1 The XPS binding energy values (eV) of NaTaO3 photocatalysts and the standard samples…………………………………………………….….343
Table 9.2 The XPS binding energy values (eV) of NaTaO3: La photocatalysts and the standard samples…………………………………………………….….345
Table 9.3 Photocatalytic water splitting on NaTaO3: La as prepared……………….348
參考文獻 Abe R., Higashi M., Zou Z., Sayama K., Abe Y. and Arakawa H., “Photocatalytic Water Splitting into H2 and O2 over R3TaO7 and R3NbO7 (R=Y, Yb, Gd, La): Effect of Crystal Structure on Photocatalytic Activity”, J. Phys. Chem. B 108, (2004) 811-814.
Dare-Edwards M. P., Goodenough J. B., Hamnett A., and Nicholson N. D., J. Chem. Faraday Trans. 2. 77, (1981) 643-661.
Denis S., Baudrin E., Touboul M., and Tarascon J. M., J. Electrochem. Soc. 144, (1997) 4099-4109.
Dittmar A., Kosslick, Muller J. P. and Pohl M.-M., “Characterization of Cobalt Oxide Supported on Titania Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition”, Surf. Coat. Technol. 182, (2004) 35-42.
Domen K., Kudo A., Onishi T., Kosugi N. and Kuroda H., “Photocatalytic Decomposition of Water into H2 and O2 over NiO-SrTiO3 Powder. 1. Structure of the Catalyst”, J. Phys. Chem. 90, (1986) 292-295.
Fujishima A. and Honda K., Nature 238, (1972) 37-38.
Guan G., Kida T., Kusakabe K., Kimura K., Fang X. Ma T., Abe E. and Yoshida A., “Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite”, Chem. Phys. Lett. 385, (2004), 319-322.
Gurunathan K. and Maruthamuthu P., “Photogeneration of Hydrogen Using Visible Light with Undoped/doped α-Fe3O4 in the Presence of Methyl Viologen”, Int. J. Hydrogen Energy 20, (1995) 287-295.
Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo Junko N. and Domen K., “Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation,” Chem. Commun., 1998, 357-358.
Hara M., Hitoki G., Tanaka T., Kondo Junko N., Kobayahi H. and Domen K., “TaON and Ta3N5 as New Visible Light Driven Photocatalysts”, Catal. Taday 78 (2003) 555-560.
Harada H., Hosoki C. and Kudo A., “Overall Water Splitting by Sonophotocatalytic Reaction: the Role of Powdered Photocatalyst and an Attempt to Decompose Water Using a Visible-Light Sensitive Photocatalyst”, J. Photochem. Photobiol. A: Chem. 141, (2001) 219-224.
Hwang D. W., Kim H. G., Kim J., Cha K. Y., Kim Y. G. and Lee J. S., “Photocatalytic Water Splitting over Highly Donor-Doped (110) Layered Perovskites”, J. Catal. 193, (2000) 40-48.
Hwang D. W., Kim J., Park T. J. and Lee J. S., “Mg-doped WO3 as a Novel Photocatalyst for Visible-light-induced Water Splitting”, Catal. Lett. 80, (2002) 53-57.
Ikeda S., Takata T., Komoda M., Hara M., Kondo Junko N., Domen K., Tanaka A., Hosono H. and Kawazoe H., “Mechano-catalysis a Novel Method for Overall Water Splitting”, Phys. Chem. Chem. Phys. 1, (1999) 4485-4491.
Ishii T., Kato H. and Kudo A., “H2 Evolution from an Aqueous Methanol Solution on SrTiO3 Photocatalysts Codoped with Chromium and Tantalum Ions under Visible Light Irradiation”, J. Photochem. Photobiol. A: Chem. 163, (2004) 181-186.
Jongh P. E. d., Vanmaekelbergh D. and Kelly J. J., “Cu2O: a Catalyst for the Photochemical Decomposition of Water? ”, Chem. Commun., (1999) 1069-1070.
Kato H., Asakura K. and Kudo A., “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure”, J. Am. Chem. Soc. 125, (2001) 3082-3089.
Kato H. and Kudo A., “New Tantalate Photocatalysts for Water Decomposition into H2 and O2”, Chem. Phys. Lett. 295, (1998) 487-492.
Kato H. and Kudo A., “Highly Efficient Decomposition of Pure Water into H2 and O2 over NaTaO3 Photocatalysts”, Catal. Lett. 58, (1999) 153-155.
Kato H. and Kudo A., “Photocatalytic Decomposition of Pure Water into H2 and O2 over SrTa2O6 Prepared by a Flux Method”, Chem. Lett., (1999) 1207-1208.
Kato H. and Kudo A., “Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A=Li, Na, K)”, J. Phys. Chem. B 105, (2001) 4285-4292.
Kato H. and Kudo A., “Energy Structure and Photocatalytic Activity for Water Splitting of Sr2(Ta1-xNbx)2O7 Solid Solution”, J. Photochem. Photobiol. A: Chem. 145, (2001) 129-133.
Kato H. and Kudo A., “Photocatalytic Reduction of Nitrate Ions over Tantalate Photocatalysts”, Phys. Chem. Chem. Phys. 4, (2002) 2833-2838.
Kato H. and Kudo A., “Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium”, J. Phys. Chem. B 106, (2002) 5029-5034.
Kato H. and Kudo A., “Photocatalytic Water Splitting into H2 and O2 over Various Tantalate Photocatalysts”, Catal. Today 78, (2003) 561-569.
Kato H., Kobayashi H. and Kudo A., “Role of Ag+ in the Band Structure and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure”, J. Phys. Chem. B 106, (2002), 12441-12447.
Kida T., Guan G. and Yoshida A., “LaMnO3/CdS Nanocomposite: a New Photocatalyst for Hydrogen Production from Water under Visible Light Irradiation”, Chem. Phys. Lett. 371, (2003) 563-567.
Kim H. G., Hwang D. W., Kim J., Kim Y. G. and Lee J. S., “Highly Donor-doped (110) Layered Perovskite Materials as Novel Photocatalysts for Overall Water Splitting”, Chem. Commun., (1999) 1077-1078.
Kim A., Hwang D. W., Bae S. W., Kim Y. G. and Lee J. S., “Effect of Precursors on the Morphology and the Photocatalytic Water Splitting Activity of Layered Perovskite La2Ti2O7”, Korean J. Chem. Eng. 18, (2001) 941-947.
Konta R., Kato H., Kobayashi H. and Kudo A., “Photophysical properties and Photocatalytic Activities under Visible Light Irradiation of Silver Vanadates”, Phys. Chem. Chem. Phys. 5, (2003) 3061-3065.
Kudo A., “Photocatalyst Materials for Water Splitting”, Catalysis Surveys from Asia 7, (2003) 31-38.
Kudo A. and Hijii S., “ H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions”, Chem. Lett., (1999) 1103-1104.
Kudo A. and Kato H., “Photocatalytic Water Splitting into H2 and O2 over Novel Photocatalyst K3Ta3Si2O13 with Pilled Structure Consisting of Three TaO6 Chains”, Chem. Lett., (1997) 867-868.
Kudo A. and Kato H., “Effect of Lanthanide-Doping into NaTaO3 Photocatalysts for Efficient Water Splitting”, Chem. Phys. Lett. 331, (2000) 373-377.
Kudo A., Kato H. and Tsuji I., “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett. 33, (2004), 1534-1539.
Kudo A., Kato H. and Nakagawa S., “Water Splitting into H2 and O2 on New Sr2M2O7 (M=Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity”, J. Phys. Chem. B 104, (2000) 571-575.
Kudo A. and Mikami I., “New In2O3(ZnO)m Photocatalysts with Laminal Structure for Visible Light-induced H2 or O2 Evolution from Aqueous Solutions Containing Sacrificial Reagents”, Chem. Lett., (1998) 1027-1028.
Kudo A. and Mikami I., “Photocatalytic H2 Evolution under Visible Light Irradiation on Zn1-xCuxS solid solution”, Chem. Lett. 58, (1999) 241-241.
Kudo A. and Sekizawa M., “Photocatalytic H2 Evolution under Visible Light Irradiation on Ni-doped ZnS Photocatalyst”, Chem. Commun., (2000) 1371-1372.
Kudo A., Nakagawa S. and Kato H., “Overall Water Splitting into H2 and O2 under UV Irradiation on NiO-loaded ZnNb2O6 Photocatalysts Consisting d10 and d0 Ions”, Chem. Lett., (1999) 1197-1198.
Kudo A., Omori K. and Kato H., “A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties”, J. Am. Chem. Soc. 121, (1999) 11459-11467.
Kudo A., Tsuji I. and Kato H., “AgInZn7S9 Solid Solution Photocatalyst for H2 Eevolution from Aqueous Solutions under Visible Light Irradiation”, Chem. Commun., (2002) 1958-1959.
Kudo A., Ueda K., Kato H. and Mikami I., “Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution, ” Catal. Lett. 53, (1998) 229-230.
Linsebigler A. L., Lu G., and Yates J. T., Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95, (1995) 735-758.
Machida M., Miyazaki K., Matsushima S. and Arai M., “Photocatalytic Properties of Layered Perovskite Tantalate, MLnTa2O7 (M =Cs, Rb, Na, and H; Ln =La, Pr, Nd, and Sm)”, J. Mater. Chem. 13, (2003) 1433-1437.
Matsushima S., Obata K., Nakamura H., Arai M. and Kobayashi K., “First Principles Energy Band Calculation for Undoped and N-doped InTaO4 with Layered Wolframite-type Structure”, J. Phys. Chem. Solids 64, (2003), 2417-2421.
Mizoguchi H., Udea K., Orita M., Moon Sang-Chul, Kajihara K., Hirano M. and Hosono H., “Decomposition of Water by CaTiO3 Photocatalyst under UV Light Irradiation”, Mater. Res. Bull. 37, (2002) 2401-2406.
Naito H. and Arashi H., “Hydrogen Production from Direct Water Splitting at High Temperature Using a ZrO2-TiO2-Y2O3 Membrane”, Solid State Inoic 79, (1995), 336-370.
Ogura S., Kohno M., Sato K. and Inoue Y., “Photocatalytic Activity for Water Decomposition of RuO2-Combined M2Ti6O13 (M= Na, K, Rb, Cs)”, Appl. Surf. Sci. 121/122, (1997) 521-524.
Ogura S., Kohno M., Sato K. and Inoue Y., “Effect of RuO2 on Activity for Water Decomposition of a RuO2/Na2Ti3O7 Photocatalyst with a Zigzag Layer Structure”, J. Mater. Chem. 8, (1998) 2335-2337.
Ogura S., Kohno M., Sato K. and Inoue Y., “Photocatalytic Properties of M2Ti6O13 (M=Na, K, Rb, Cs) with Rectangular Tunnel and Layer Structures: Behavior of a Surface Radical Produced by UV Irradiation and Photocatalytic Activity for Water Decomposition”, Phys. Chem. Chem. Phys. 1, (1999) 179-183.
Ogura S., Sato K. and Inoue Y., “Effect of RuO2 Dispersion on Photocatalytic Activity for Water Decomposition of BaTi4O9 with a Pentagonal Prism Tunnel and K2Ti4O9 with a Zigzag Layer Structure”, Phys. Chem. Chem. Phys. 2, (2000) 2449-2454.
Oshikiri M., Boero M., Ye J., Aryasetiawan F. and Kido G., “The Electronic Structure of the Thin Films of InVO4 and TiO2 by First Principles Calculations”, Thin Solid Films 445, (2003) 168-174.
Sato J., Saito N., Nishiyama H. and Inoue Y., “Photocatalytic Water Decomposition by RuO2-loaded Antimonates M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 Configuration”, J. Photochem. Photobiol. A: Chem. 148, (2002) 85-89.
Sato J., Kobayashi H., Saito N., Nishiyama H. and Inoue Y., “Photocatalytic Activities for Water Decomposition of RuO2-loaded AInO2 (A=Li, Na) with d10 Configuration”, J. Photochem. Photobiol. A: Chem. 158, (2003) 139-144.
Sayama K. and Arakawa H., “Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 Catalyst”, J. Phys. Chem. 97, (1993) 531-533.
Sayama K., Arakawa H., and Abe R., “Photocatalytic Water Splitting on Nickel Intercalated A4TaxNb6-xO17 (A=K, Nb)”, Catal. Today 28, (1996) 175-182.
Sayama K., Yase K., Arakawa H., Asakura H., Tanaka A., Domen K. and Onishi T., “Photocatalytic Activity and Reaction Mechanism of Pt-intercalated K4Nb6O17 Catalyst on The Water Splitting in Carbonate Salt Aqueous Solution”, J. Photochem. Photobiol. A: Chem. 114 (1998) 125-135.
Sayama K., Mukasa K., Abe R., Abe Y. and Arakawa H., “Stoichiometric Water Splitting into H2 and O2 Using a Mixture of Two Different Photocatalysts and an IO3-/I- Shuttle Redox Mediator under Visible Light Irradiation”, Chem. Commun., (2001), 2416-2417.
Sayama K., Mukasa K., Abe R., Abe Y. and Arakawa H., “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol. A: Chem. 148, (2002) 71-77.
Scaife D. E., Sol. Energy 24, (1980) 41-54.
Shimizu K., Tsuji Y., Hatamachi T., Toda K., Kodama T., Sato M. and Kitayama Y., “Photocatalytic Water Splitting on Hydrated Layered Perovskite Tantalate A2SrTa2O7.nH2O (A=H, K, and Rb)”, Phys. Chem. Chem. Phys. 6, (2004) 1064-1069.
Sohn J. and Woo S. I., “The Effect of Reoxidation Time during the Preparation of Ni-loaded CsLa2Ti2NbO10 on the Photocatalytic Hydrogen Production in Water Decomposition Reaction”, Appl. Catal. A: General 249, (2003) 375-384.
Takahara Y., Konda J. N., Takata T., Lu D. and Domen K., “Mesoporous Tantalum Oxide. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition”, Chem. Mater. 13, (2001) 1194-1199.
Takata T., Shinohara K., Tanaka A., Hara M., Kondo J. N. and Domen K., “A Highly Active Photocatalyst for Overall Water Splitting with a Hydrated Layered Perovskite Structure”, J. Photochem. Photobiol. A: Chem. 106, (1997) 45-49.
Takata T., Furumi Y., Shinohara K., Tanaka A., Hara M., Kondo J. N. and Domen K., “Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites” Chem. Mater. 9, (1997) 1063-1064.
Tokunaga S., Kato H. and Kudo A., “Selective Preparation of Monoclonoc and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties”, Chem. Mater. 13, (2001) 4624-4628.
Touboul M., Melghit K. and Denis S., “Lew X-ray Powder Diffraction Data for Indium Vanadium Oxide InVO4-III”, Powder Diffr. 11, (1996) 22-23.
Touboul M., Melghit K., Bénard P., and Louer D., “Crystal Structure of a Metastable Form of Indium Orthovanadate, InVO4-I”, J. Solid State Chem. 118, (1995) 93-98.
Touboul M. and Tole´Dano P., “Structure du Vanadate d'Indium: InVO4”, Acta Crystallogr. Sect. B: Struct. Sci., (1980) 240-245.
Tsuji I. and Kudo A., “H2 Evolution from Aqueous Sulfite Solutions under Visible-Light Irradiation over Pb and Halogen-codoped ZnS Photocatalysts”, J. Photochem. Photobiol. A: Chem. 156 (2003) 249-252.
Voβ M., Borgmann D. and Wedler G., J. Catal. 212, (2002) 10.
Wang D., Zou Z. and Ye J., “A New Spinel-type Photocatalyst BaCr2O4 for H2 Evolution under UV and Visible Light Irradiation”, Chem. Phys. Lett. 373, (2003) 191-196.
Wang D., Zou Z. and Ye J., “A Novel Zn-doped Lu2O3/Ga2O3 Composite Photocatalyst for Stoichiometric Water Splitting under UV Light Irradiation”, Chem. Phys. Lett. 384, (2004) 139-143.
Yamakata A., Ishibashi T.-A., Kato H., Kudo A., and Onishi H., “Photodynamics of NaTaO3 Catalysts for Efficient Water Splitting”, J. Phys. Chem. B 107, (2003) 14383-14387.
Ye J., Zou Z. and Matsusshita A., “A Novel Series of Water Splitting Photocatalysts NiM2O6 (M=Nb, Ta) Active under Visible Light”, Int. J. Hydrogen Energy 28, (2003) 651-655.
Ye J., Zou Z., Arakawa H., Oshikiri M., Shimoda M., Matsusshita A. and Shishido T., “Correlation of Crystal and Electronic Structures with Photophysical Properties of Water Splitting Photocatalysts InMO4 (M=V5+, Nb5+, Ta5+)”, J. Photochem. Photobiol. A: Chem. 148 (2002) 79-83.
Ye J., Zou Z., Oshikiri M., Matsusshita A., Shimoda M., Imai M. and Shishido T., “A Novel Hydrogen-evolving Photocatalyst InVO4 Active under Visible Light Irradiation”, Chem. Phys. Lett. 356, (2002) 221-226.
Zou Z. and Arakawa H., “Direct Water Splitting into H2 and O2 under Visible Light Irradiation with a New Series of Mixed Oxide Semiconductor Photocatalysts”, J. Photochem. Photobiol. A: Chem. 158 (2003) 145-162.
Zou Z., Ye J. and Arakawa H., “Structure Properties of InNbO4 and InTaO4: Correlation with Photocatalytic and Photophysical Properties”, Chem. Phys. Lett. 332, (2000) 271-277.
Zou Z., Ye J. and Arakawa H., “Photophysical and Photocatalytic Properties of InMO4 (M=Nb5+, Ta5+) under Visible Light Irradiation”, Mater. Res. Bull. 36, (2001) 1185-1193.
Zou Z., Ye J. and Arakawa H., “Photocatalytic Water Splitting into H2 and/or O2 under UV and Visible Light Irradiation with a Semiconductor Photocatalyst”, Int. J. Hydrogen Energy 28, (2003) 663-669.
Zou Z., Ye J., Sayama K., and Arakawa H., “Photocatalytic Hydrogen and Oxygen Formation under Visible Light Irradiation with M-doped InTaO4 (M = Mn, Fe, Co, Ni and Cu) Photocatalysts”, J. Photochem. Photobiol. A: Chem. 148 (2002) 65-69.
Zou Z., Ye J., Sayama K., and Arakawa H., “Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst”, Nature 414, (2001) 625-627.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2005-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明