博碩士論文 92326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.15.147.53
姓名 沈政儒(Jheng-Ru Shen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究
(Characteristics study on co-melting and slag's pozzolanic from municipal solid waste fly ash and sewage sludge ash )
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 廢棄物衍生Thermite 熔融劑之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究
★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究★ 廢鑄砂及石材污泥取代水泥生料之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究★ 廢棄物衍生鋁熱熔融劑處理鉻污泥
★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究
★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響★ 下水污泥焚化灰渣燒成輕質骨材特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係利用焚化飛灰與四種不同工程性質之下水污泥灰依不同比例摻配,進行鹽基度調質以降低灰渣熔流溫度,並進行調質灰組成份與鹽基度對熔流溫度迴歸分析,以探討都市垃圾焚化飛灰與下水污泥灰共同熔融之操作條件對熔流溫度之影響。另外,為建立共熔熔渣之基本材料特性,亦探討熔渣取代部分水泥之卜作嵐反應行為,包括熔渣水泥漿體抗壓強度、水化產物種類,水化程度,微結構觀察等。
實驗結果顯示,調質灰之組成份CaO、SiO2、Al2O3量對於熔流溫度R2分別為0.91、0.75、0.74。另外,調質灰熔流溫度隨CaO量之提高而逐漸增加,但隨SiO2和Al2O3提高則有降低之趨勢。調質灰CaO、SiO2、Al2O3三成份對熔流溫度之多變數迴歸方程式為FT = 1189.6+4.19 CaO-0.96 SiO2-4.33 Al2O3,R2為0.91。7種鹽基度對熔流溫度之R2介於0.84~0.91之間,鹽基度1具有簡單判定及高相關性之優點,其中又以鹽基度5相關性最佳。整體而言,鹽基度低於1以下熔流溫度較低,超越1~1.2之後熔流溫度明顯呈現上升之趨勢。
XRF分析顯示,各熔渣之主要成分為CaO、SiO2、Al2O3、P2O5,接近於高爐爐石與class C fly ash,屬於延遲水化膠結材料。熔渣卜作嵐活性佳,介於87.9~103.2%之間,重金屬溶出濃度相當低且符合法規標準值。
取代量10及20%熔渣水泥漿體,養護28天後強度發展趨勢較純水泥漿體快,且經90天水化後熔渣水泥漿體強度與純水泥漿體相當或超越之,其中又以NH熔渣水泥漿體強度較高,而JJ與BL強度發展相當。XRD和FTIR分析顯示,水化產物主要包括CH、C-S-H、Tobermorite、Hydroganet、Gismodine。NMR分析顯示,隨齡期發展C-S-H 結構的聚合程度逐漸提高,且齡期90天時水化程度與聚矽陰離子長度皆大於OPC漿體,顯示熔渣晚期卜作嵐反應有助於漿體矽酸鹽類之聚合。SEM觀察發現,隨卜作嵐反應持續進行,C-S-H 膠體形成緻密的網狀結構,並與其他水化產物C-A-H和C-A-S-H等交結在一起,進而增加漿體的緻密度並提升物理強度。
摘要(英) The melting of municipal solid waste (MSW) fly ash is currently being practiced for recycling purposes under the sustainable waste management policy. Due to increasing concerns regarding the energy-intensivity of the process, in practice the basicity of MSW fly ash has been modified by the addition of sewage sludge ash (SSA),which lowers the melting temperature. However, it is essential that engineers and operators have a better understanding of how the basicity of the starting mixture affects the pouring point and the characteristics of the slag product produced by the co-melting process. Thus this study investigates the effects of the basicity on the pouring point of the fly ash-SSA mixture by using four kinds of SSAs as modifiers, which were collected from several primary and secondary sewage treatment plants (STPs) and were produced by different processes and sludge conditioning alternatives.The effects on the co-melted slags were determined by studying the slag’’s pozzolanic activity and its reactivity as a pozzolans in the slag-blended-cement (SBC) pastes.
The results indicate that the pouring point of the mixture increased with increasing basicity, within the range from 0.65-1.90. As defined by Murakami Basicity=(MgO+CaO+Fe2O3+K2O+Na2O)/(SiO2+Al2O3). The pouring point is affected by the contents of the mixtures (CaO, SiO2, Al2O3 and the flux). It is suggested that an increase in the CaO content tended to increase the pouring point; whereas an increase in the SiO2 and/or the Al2O3 contents reacted adversely.
The mineral compositions of the co-melted slags were determined by XRF analysis. Results indicate that the main components of the composition, CaO, SiO2, Al2O3 and P2O5 were close to those of the blast furnace slag and the class C fly ash. The co-melted slags also showed a high pozzolanic activity ranging from 87.9-103.2%, so could be classified as latent hydraulic materials. In addition, TCLP
testing for the targete heavy metals indicate that all the slag samples in this study met the US EPA’’s regulatory thresholds.
The pozzolanic reactivity of slag is determined by the compressive strength development of the SBC pastes and the product of the calcium silicate hydrate (C-S-H) in the pastes. SBC pastes with a replacement of cement by up to 20% showed a compressive strength at 90 days similar to or surpassing that of ordinary portland cement (OPC) paste. In particular, the SSA from Neihu STP,which was characterized by a high CaO content, due to the conditioning of the sludge by lime, outperformed the OPC paste in terms of compressive strength development. On the other hand, calcium hydroxide (CH), C-S-H, tobermorite, hydroganet and gismodine were confirmed by the XRD techniques,to be the main hydration products in the SBC pastes. NMR analyses also indicate that the formation of C-S-H in the SBC pastes increased with age, so that the degree of hydration and the growing length of the C-S-H at 90 days outperformed that of the OPC paste, as indicated by pozzolanic reactions in the slag at a later age. The pozzolanic reactions were further confirmed by SEM observation. A dense network of C-S-H which interpenetrated other hydrates, such as calcium aluminate hydrate (C-A-H) and calcium aluminate silicate hydrate (C-A-S-H) formed as the pozzolanic reactions proceeded.
From the results of this study concluded that the modification of basicity of MSW fly ash by the addition of SSA to lower the pouring point leading to a energy-efficient melting process is feasible, and the SBC which incorporated the co-melted slag has a comparable engineering performance to that at the OPC pastes.
關鍵字(中) ★ 焚化飛灰
★ 下水污泥灰
★ 共同熔融
★ 熔渣
★ 卜作嵐反應
關鍵字(英) ★ slag
★ co-melting
★ pozzolanic
★ MSW fly ash
★ sewage sludge ash
論文目次 第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究內容及方向 2
第二章 文獻回顧 3
2-1 都市垃圾焚化灰渣來源及物化特性 3
2-1-1 都市垃圾焚化灰渣來源 3
2-1-2 都市垃圾焚化飛灰物化特性 6
2-1-3 焚化飛灰重金屬含量 9
2-2 下水污泥來源、產量及物化特性和污泥灰組成 12
2-2-1 下水污泥來源及產量 12
2-2-2 下水污泥物化特性 15
2-2-3 下水污泥灰之組成份 16
2-2-3-1灰份組成之分析 16
2-2-3-2灰份組成間之關係 17
2-2-3-3不同下水排除方式之灰份組成 18
2-3 熔融處理 20
2-3-1 熔融處理之原理 20
2-3-2 熔融處理操作之因子 22
2-3-2-1 灰渣鹽基度 22
2-3-2-2 灰渣粒徑大小及分怖 24
2-3-2-3 熔融操作時間 24
2-3-2-4 熔融操作溫度 25
2-3-2-5 熔融爐氣氛條件 25
2-3-2-6 相圖 26
2-3-2-7 熔融液黏度 28
2-3-3 下水污泥灰組成與熔流點之相關性 28
2-3-3-1氧化物之熔融溫度 28
2-3-3-2 SiO2與鹽基度對熔流溫度之關係 30
2-3-3-3 污泥灰鹽基度與熔融溫度之特性 32
2-3-3-4 有機及無機系污泥灰之熔融特性 32
2-3-4 熔融處理之應用及處理效應之指標 39
2-3-4-1 熔融處理之應用 39
2-3-4-2 熔融處理效率之指標 40
2-3-5 熔渣種類及資源化 43
2-3-5-1熔渣種類 43
2-3-5-2 熔渣之資源化 45
2-4 卜作嵐材料 48
2-4-1卜作嵐材料之類型 50
2-4-2卜作嵐材料之反應機制及應用 51
2-4-2-1 卜作嵐材料與C3S之反應 51
2-4-2-2 卜作嵐材料C3A與之反應 52
2-4-3卜作嵐反應之相態平衡 55
2-4-4卜作嵐材料品質控制指標 57
2-4-5卜作嵐反應活性之評估指標 59
2-4-6卜作嵐材料取代部分水泥之應用 62
第三章 實驗材料與方法 66
3-1 實驗流程 66
3-1-2 飛灰與下水污泥灰共同熔融操作條件配置 70
3-1-3 共熔熔渣水泥漿體試驗條件配置 73
3-2 實驗材料與分析設備及方法 75
3-2-1 實驗材料 75
3-2-2 實驗設備 80
3-2-3 分析儀器 82
3-2-4 分析方法 84
第四章 結果與討論 96
4-1 焚化飛灰與下水污泥及灰渣基本性質分析 96
4-1-1 飛灰與污泥及灰渣之物化性質 96
4-1-2 飛灰與污泥及灰渣之物種型態 105
4-1-3 飛灰與污泥及灰渣之重金屬總量與TCLP試驗 108
4-2 飛灰與下水污泥灰共同熔融操作因子之影響 110
4-2-1調質灰組成份與熔流溫度之迴歸分析 110
4-2-1-1 調質灰CaO成份對熔流溫度之迴歸分析 110
4-2-1-2 調質灰SiO2成份對熔流溫度之迴歸分析 112
4-2-1-3 調質灰Al2O3成份對熔流溫度之迴歸分析 113
4-2-1-4調質灰組成對熔流溫度之多變數迴歸分析 115
4-2-1-5 調質灰等熔流溫度分佈 116
4-2-2 調質灰鹽基度與熔流溫度之迴歸分析 117
4-3 熔渣基本性質分析 123
4-3-1 熔渣之物化性質 123
4-3-2 熔渣之重金屬總量與TCLP試驗 130
4-4 熔渣水泥漿體之巨觀分析 133
4-4-1 凝結行為 133
4-4-2 卜作嵐活性指數 135
4-4-3 抗壓強度發展 136
4-4-3-1 熔渣取代量於抗壓強度發展之影響 136
4-4-3-2 熔渣水泥漿體比強度 141
4-5 熔渣水泥漿體水化產物之分析 143
4-5-1 熔渣水泥漿體XRD分析 143
4-5-2 熔渣水泥漿體FTIR分析 153
4-6 熔渣水泥漿體之水化程度與膠體空間比分析 157
4-6-1 水化程度 157
4-6-2 膠體空間比 162
4-7 熔渣水泥漿體NMR分析 167
4-7-1 熔渣水泥漿體特徵峰變化 167
4-7-2 熔渣水泥漿體水化程度與聚矽陰離子長度之變化 175
4-8 熔渣水泥漿體SEM觀察 180
4-9 綜合討論 183
4-9-1 調質對熔流溫度之影響 183
4-9-2 熔渣水泥漿體巨微觀性質分析 188
第五章 結論與建議 191
5-1 結論 191
5-2 建議 194
參考文獻 195
參考文獻 Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M., “Stabilization/solidification of MSWI residues from facilities with different air pollution control systems. Durability of matrices versus carbonation”, Waste Management, Vol. 21, pp. 313-323, 2001.
Aubert J.E. , B. Husson, A. Vaquier , “Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products”,Waste Management 24, pp. 589-596, 2004.
Buchholz, B. A., and S. Landsberger, “Leaching Dynamics Studies of Municipial Soild.Waste Incinerator Ash”,Journal of the Air & Waste Management Association,Vol.45,pp.579-590,1995.
Cabrera, J G; Al-Hasan, A S , “Performance properties of concrete repair materials”, Construction and Building Materials,Vol.11, Issue:5-6, pp.283-290,1997.
Chang, P. K., Hou, W. M. , “A study on hydration properties of high performance slag concrete analyzed by SRC”,Cement and Concrete Research Vol.33,pp.183-189,
2003.
Chiang, Y. M, Birnie,D. P., Kingery, W. D., “Physical Ceramics”,John Wiley & Sons,Inc., New York,1996.
Chimenos, J. M.; Segarra, M.; Fernandez, M. A.; Espiell, F. “Characterization of the Bottom Ash in Municipal Solid Waste Incinerator.” Journal of Hazardous Material, Vol. A64, pp. 211-222, 1999.
Derie R., “A New Way to Stabilize Fly Ash From Municipal Incinerator”Waste Management,Vol 16,No. 8,pp.711-716,1996.
Dron. R. , “Experimental and Theoretical study of the CaO-Al2O3-SiO2-H2O system”, Cement,Concrete,and Aggregates,Vol .4,No.2, pp.156-160, 1975.
Dyer D. Thomas, Ravindra K. Dhir , “Hydration reactions of cement combinations containing vitrified incinerator fly ash”,Cement and Concrete Research,Vol 34 ,pp.849-856,2004.
Frearson, J. P. H., and J. M. Uren,“Investigations of a Ground Granulated Blast Furace Slag Containing Merwinitic Crystallization”, ACI Journal, SP-91, pp.1401-1421, 1986.
F. Keil, Slag cements, Proceedings of the Third International Symposium on the Chemistry of Cements, London, Cement and Concrete Association, pp. 530– 571,1952.
Gardner, K. H. Characterization of Leachates from Municipal Incinerator Ash Materials, Thesis, Clarkson University, 1991.
Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Vol.88, No. 3, p.294, 1991.
He, C., E. Makovicky, and B. Osback, “Thermal Treatment and Pozzolanic Activity of Sepiolite”, Applied Clay Science, Vol. 10, No. 6, pp.341-349,1996.
Helmuth,R.A. , “Fly ash in Cement and Concrete”,Portland Cement Association,1987.
Hill J., J.H. Sharp “The mineralogy and microstructure of three composite cements with high replacement levels”,Cement & Concrete Composites, Vol.24, pp. 191-199,2002.
Jakob, A., Stucki, S. and Kuhn, P., “Evaporation of heavy metals during th heat treatment of municipal solid waste incinerator fly ash”, Environmental Science &Technology, Vol. 29, No. 9, p.2429, 1995.
Jakob, A., S. Stucki and R. P. W. J. Struis, “Complete heavy metal removal from fly ash by heat treatment: Influence of chlorides on evaporation”, Environ. Sci. Technol., Vol. 30, pp.3275-3283, 1996.
Jawed, I , and J, Skalny, “Hydration of Tricalcium Silicate in the Presence of Fly Ash”, Material Research Society, Annual Meeting, PP.60-70, 1982.
Jimbo, H., “Plasma Melting and Useful Application of Molten Slag”,Waste Management,16,417,1996.
Karamanov, A.,Pelino, M., Salvo, M.,Metekovits, I., “Sintered Glass-Ceramics from Incinerator Fly Ashes.Part Ⅱ.The Influence of the Particle Size and Heat-Treatment on the Properties”,Journal of the European Creamics Society, Vol.23,p.1609, 2003.
Klein, D.H., Andren, A.W.,Carter, J. A.,Emery, J. F.,Feldman, C., Fulkerson, W.,Lyon, W. S., Ogle, J. C., Talmi, Y., Vanhook, R. I., Bolton, N., “Pathways of Thirty-seven Trace Elements through Coal-Fired Power Plant”,Environmental Sciencd & Technology, Vol.9, p.973, 1975.
Kosson, D.S., Sloot, H.A., and Eighmy, T.T., “An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues”, Journal of Hazardous Materials, Vol.47, No. 2-3, pp.43-75, 1996.
Matsunaga T., J. K. Kim, S. Hardcastle and P.K. Rohatgi, “Crystallinity and selected properties of fly ash particles”, Materials Science and Engineering, Vol. A325, pp. 333-343, 2002.
Makoto Hattori, Eiji Shoto, “Solidification of heavy metal-containing sludges by heating with silicate, Toxic and hazardous waste disposal”, Ann Arbor Science, Vol. 3, pp.141-154, 1981.
Mathews, A. P, “Chemical Equilibrium Analysis of Lead and Beryllium Speciation in Hazardous Waste Incinerators”, Proceedings of the Second International Symposium on Metals Speciation, Separation and Recovery, II, pp.73-83, 1989.
McCarter, W. J. and D. Tran, “Monitoring Pozzolanic Activity by Direct Activation with Calcium Hydroxide”, Construction and Building Materials,Vol. 10, No. 3, pp. 179-184,1996.
Mehta , P. K. , “Pozzolanic and Cementitious By-Products in Concrete-Another Look. ”,Fly ash , Silica Fume ,Slag ,and Natural Pozzolans in Concrete, ACI SP-901 , Vol. 1 ,Norway,1989.
Mulholland, J. A., Sarofim, A. F., “The Formation of Inorganic Particles During Suspension Heating Simulated Wastes”,Environmental Progress,10,83, 1991.
Ogawa, K. , H. Uchikawa and K. Takemoto, “The Mechanism of the Hydration in the System C3S-Pozzolana”,Cement and Concrete Reseasch, Vol.10, No.5, PP.683~696,1980.
Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers, Inc., 1991.
Paya, J., J. Monzo, M. V. Borrachero, E. Peris, and E. Gonzalez-Lopez, “Mechanical Treatment of Fly Ash. Part Ⅲ :Studies on Strength Development of Ground Fly Ash (GFA)-cement mortars”, Cement and Concrete Research, Vol. 27, No. 9, pp. 1365-1377,1997a.
Pacyna, J. M., and Ottar, B., “Control and Metal Emissions From Waste Incinerators” ,Control and Fate of Atmospheric Trace Metals, pp.33-45,1989.
Plowaman, C. and J. G. Cabbrra, “Mechanism and Kinetics of Hydration of C3A and C4AF, Extracted from Cement”, Cement and Concrete Research, Vol. 14, No. 2, pp.238-248, 1984.
Pu, X., “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index”, Cement and Concrete Research, Vol. 29, No. 6, pp.951-955, 1999.
Rai Amit , J. Prabakar , C.B. Raju , R.K. Morchalle “Metallurgical slag as a component in blended cement”, Construction and Building Materials Vol. 16, pp.489-494, 2002.
Rojas Moises Frıas, M.I. Sanchez de Rojas “The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60℃”, Cement and Concrete Research, Vol. 33,pp.643-649, 2003.
Rosenqviat T., “Principles of Extractive Metallurgy”, McGraw-Hill, New York,1974.
Sakai, S. and Hiraoka, M., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, No. 2-3, pp.249-258, 2000.
Sakai, S., “Municipal solid waste management in Japan”, Waste Management, 6(5-6), pp.395-405, 1996.
Sanchez de Rojas, M. I. and M.Frias, “The Pozzolanic Activity of Different Materials, Its Influence on the Hydration Heat in Mortars”, Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213,1995.
Sukrut S. Thipse, Mirko Schoenitz and Edward L. Dreizin, “Morphology and composition of the fly ash particles produced in incineration of municipal solid waste”, Fuel Processing Technology, Vol. 75, pp.179-184, 2002.
Sokkary, T. M.,Assal, H. H., Kandeel, A. M, “Effect of silica or granulated slag on sulphate attack of ordinary Portland and alumina cement blend”, Ceramics International, Vol. 30,pp. 133-138,2004.
Tanaka, T. et al., “Demonstration of a multi-purpose incineration melter system”, ANS International Topical Meeting, 1986.
Taylor, H.F.W., “Cement chemistry”, Thomas Telford, 1997.
Takaoka, Masaki; Takeda, Nobuo; Miura, Satoshi, “The behaviour of heavy metals and phosphorus in an ash melting process”, Water Science and Technology ,Vol. 36, Issue: 11, pp. 275-282, 1997.
Targan S., A. Olgun, Y. Erdogan, V. Sevinc “Influence of natural pozzolan, colemanite ore waste, bottom ash,and fly ash on the properties of Portland cement”,Cement and Concrete Research vol.33, pp. 1175-1182,2003.
Tashiro, C., K. Ikeda, and Y. Inoue, “Evaluation of Pozzolanic Activity by the Electric Resistance Measurement Method”, Cement and Concrete Research, Vol. 24, No. 6, pp. 1133-1139,1994.
Tchobanoglous, G., Theisen, M., and Vigil, S., “Integrated Solid Waste Management Engineering Principles and Management Issues”, McGraw-Hill, Inc., Singapore, l993.
Wasserman, R. and A. Bentur, “Effect of Lightweight Fly Ash Aggregate Microstructure on the Strength of Concrete”, Cement and Concrete Research, Vol. 27, No. 4, pp. 525-537,1995.
Wey, M. Y., Degreve, J., Van Rompay, P., “Simulation of a Slagging Incineration Process”, Computers & Chemical Engineering, 15(5), 297-304, 1991.
Young Jun Park and Jong Heo, “Vitrification of fly ash from municipalsolid waste incinerator”, Journal of Hazardous Materials, Vol. B91,pp. 89-93, 2002.
Yoshiie, Ryo, Makoto Nishimura and Hiroshi Moritomi, “Influence of ash composition on heavy metal emissions in melting process”, Fule,Vol. 81, pp.1335-1340, 2002.
大嶋吉雄、增田隆司,「下水污泥溶融スラグの有效利用」,下水道協會誌,26(307),pp.21-29,1989。
池原洋一、鈴木邦雄等,「清掃工廠のっぅィゥシシュの抵抗爐による熔融處理技術時について」,都市清掃,第39卷,第153號,1986。
村上忠弘、石田貴榮,「污泥熔融に係ゐ指標の檢討」,下水道協會誌,Vol. 26,No. 300,1989。
村上忠弘、石田貴榮、鈴木和美、角田幸二,「污泥熔に係ゐ指標の檢討」,下水道協會誌,Vol. 2,No.300,pp.32-46,1985。
村上忠弘、佐佐木邦利,「污泥熔融程序省能源化之相關調查報告書」,1990。
杜志謙,「焚化灰渣電漿熔融及製成玻璃陶瓷之研究」,碩士論文,國立台北科技材料及資源工程系研究所,2003。
李建中、李釗、何啟華、鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為」,碩士論文,國立中央大學環境工程學研究所,2001。
江慧嫻,「工業廢水污泥/淨水污泥共同熔融處理之基礎性及資源化研究」,碩士論文,國立台灣大學環工所,2001。
江康鈺、王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治,Vol.64,pp.156-188,1997。
吳長信,「含爐石粉高性能混凝土之配比技術與性質量測」,碩士論文,國立台灣科技大學營建工程技術研究所,1997。
沈得縣,「高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣工業技術學院,台北1991。
林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究,碩士論文,國立中央大學環境工程學研究所,2003。
林家宏,「飛灰調質熔渣成份對卜作嵐反應特性之影響」,碩士論文,國立中央大學環境工程學研究所,2004。
林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程學研究所,中壢2002。
洪聰民,「垃圾焚化灰渣利用之研發建制及推廣計畫(第三年) -都市垃圾焚化爐飛灰電漿熔融處理之評估」,原子能委員會核能研究所,2000。
陳宏銘,「都市下水污泥熔融特性之基礎探討」,碩士論文,國立中央大學環境工程學研究所,1991。
曾博榆,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程學研究所,2002。
張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,1992。
奧野長晴、山田昭捷、吉田憲一,「下水污泥ケキ一を原料 す熔融技術の開發」,下水道協會誌,24(276),pp.75-88,1987。
陳聯平,「垃圾變身灰渣與飛灰可做磁磚」,自由時報,2002。
黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,1986。
黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
黃兆龍,「高等混凝土技術」,國立台灣工業技術學院工程技術研究所講義,台北1985。
黃然、鄭安「水淬高爐爐石粉應用於鋼筋混凝土構造物之耐久性」,2000。
黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢2000。
鈴木孝、藤本忠生,「都市燒卻殘渣熔融處理」,都市清掃,第40卷,第159號,1987。
詹炯淵,「垃圾焚化飛灰管理對策之研究」,碩士論文,國立臺灣大學環境工程學研究所,台北2000。
詹孟贇、李釗、歐陽嶠暉,「都市下水污泥熔渣細骨材利用可行性之研究」,第十屆廢棄物處理技術研討會論文集,pp.54-63,1995。
鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,碩士論文,淡江水資源及環境工程研究所,1995。
歐陽嶠暉,「都市污水處理場之污泥處理與資源化再利用之研究」,內政部營建署委託研究計劃,1998。
謝素蘭,「以高壓及高溫燒結技術鑄造水泥.黏土及飛灰混合料組件之研究」國立台灣工業技術學院工程技術研究所營建工程技術組 ,1990。
關一洋,「旋回溶融炉—千葉市」,下水道協會誌,26(307),pp.41-46,1989。
羅舜馨,「以合成沸石穩定土壤之重金屬」,碩士論文,國立臺灣大學環境工程學研究所,1995。
顧順榮、鐘昀泰、張木彬,「台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物技術研討會論文集,pp.271-279,1995。
行政院環保署,http://www.epa.gov.tw/,2005。
內政部營建署,http://www.cpami.gov.tw/,2005。
指導教授 王鯤生、林凱隆
(Kuen-Sheng Wang、Kai-Long Lin)
審核日期 2005-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明