博碩士論文 92326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.217.60.35
姓名 陳鴻文(Hown-Wen Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標的影響
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生質燃燒活動會產生大量溫室氣體及氣膠,造成地區性的空氣污染及酸雨,也會影響雲的特性、雲量等,間接影響大氣輻射平衡及全球氣候的變化。
每年春季是亞洲中南半島生質燃燒活動頻繁的時間,在適當的天氣系統傳輸下會將當地的污染物帶到台灣。本研究選擇在台灣中部海拔2,862公尺的鹿林山天文觀測站做為大氣氣膠觀測地點,在2004年秋末及2004年12月中旬進行背景觀測,在2005年4月進行生質燃燒事件日觀測;另外,以實驗模擬近生質燃燒源的活動。分析項目包括氣膠質量濃度、氣膠水溶性離子、碳成分、左旋葡萄糖與二元酸。
本研究發現在受到生質燃燒影響時,細粒徑氣膠質量濃度明顯較背景觀測期間高出3倍之多,生質燃燒事件期間PM2.5濃度平均為15.4 μg m-3。在氣膠水溶性離子組成,背景觀測及生質燃燒事件中,顯著離子物種都是銨根離子、硫酸根離子,另外,鉀離子濃度在生質燃燒事件比背景高出3倍。在氣膠碳成分方面,生質燃燒事件發現揮發裂解碳(OCpy)有明顯增加的情形,元素碳則以低溫元素碳(EC1-OP)為顯著物種。氣膠左旋葡萄糖在生質燃燒事件有較大的濃度值,平均為46.5 ng m-3。在少數雲霧氣膠的觀測,硫酸根離子和元素碳都有增加的情形。
本研究進行的稻草及華山松的燃燒氣膠採樣,顯示近生質燃燒源所產生的氣膠多是以細粒徑氣膠為主,且水溶性離子組成多是以氯離子與鉀離子為主;碳成分分布物種則以高溫揮發有機碳(OC3)所佔比例較多,元素碳為EC1-OP所佔比例較顯著。另外,針對不同燃燒狀態下採集分析的結果,悶燒狀態比燃燒狀態產生較多的細粒徑氣膠,水溶性離子組成多是以燃燒狀態有較高的濃度值;在碳成分方面,分別計算OC各物種佔OC與EC各物種佔EC的比例,發現燃燒狀態在高溫揮發有機碳(OC4)和OCpy所佔比例較悶燒狀態高,而悶燒狀態則是在低溫揮發有機碳(OC2)和OC3佔有較大的比例。
在物種指標方面,生質燃燒氣膠主要的物種有碳成分及鉀離子,利用這些物種進行比值的探討。生質燃燒長程傳輸及近污染源K+/EC的比值分別為0.25、0.36,EC/TC在長程傳輸與近污染源比值分別為0.20、0.09,OC/EC對長程傳輸及近污染源的比值為4.58、9.13。另外,計算總二元酸與左旋葡萄糖的比值,計算得值為4.55。利用左旋葡萄糖與鉀離子的比值判斷不同燃燒狀態,獲得燃燒狀態為0.023,悶燒狀態為0.044。本研究顯示了生質燃燒氣膠近污染源觀測和長程傳輸的對比。
摘要(英) Biomass burning produces a great amount of greenhouse gases and aerosols, which cause not only local air pollution and regional acid rain but also affect the formation of clouds and thus regional radiation balance as well as global climate change.
Every spring season, biomass burning is frequently occurred in the Southeast Asia. Under the transport of an appropriate weather system, the air mass can carry the produced pollutants. This study chose Lu-lin Mountain (2,862 m a.s.l.) situated in central Taiwan for observation on aerosols from long-range transport. The observations include background periods in Autumn and December in 2004 and event period in April 2005. In addition, the experiment was conducted to sample aerosols near the burning source of rice straw and pine. The analyzed aerosol properties include mass concentration, water-soluble ion, carbonaceous content, monosacchride anhydrides, and dicarboxylic acids.
The results show that PM2.5 average in the period of long-range transport biomass burning was 15.4 μg m-3, which was clearly three times than that of the background observation. For water-soluble ions, the dominant species were ammonium and sulfate both in the background observation and in the the period of biomass burning. However, potassium ion observed in the biomass burning was three times more than that of the background. For carbonaceous content, volatility-corrected OC (OCpy) was increased significantly during the biomass burning event. The low temperature (EC1-OP) was dominant in elemental carbon (EC). Aerosol levoglucosan, which is considered as a cellulose burning tracer, was observed higher at an average of 46.5 ng m-3 during the biomass burning event. From the collection of cloud and fog aerosol, both sulfate ion and EC were found higher than background samples.
In the study of near source biomass burning, the results showed that the aerosol produced was predominant in the fine mode. Water-soluble ions were dominated by chloride and potassium ions. In terms of carbon fractions, high-temperature voltilized OC3 was the most important species and EC1-OP was the major species in EC. In addition, the results of different combustion phases showed that smoldering phase emitted more fine aerosols than flaming phase. However, the water-soluble ions were in greater amount for flaming phase than smoldering phase. As for carbonaceous fractions, the ratios of high-temperature voltilized OC4 and OCpy in OC for flaming phase were greater than those of smoldering phase. In contrast, smoldering phase had greater ratios of low-temperature voltilized OC2 and OC3 in OC than those of flaming phase.
For aerosol tracer study, potassium ion and carbons were found useful in comparing aerosols from near source and long-range transport. The K+/EC values for long-range transport and near source of biomass burning were 0.25 and 0.36, respectively. Meanwhile, the values of EC/TC for long-range transport and near source of biomass burning were 0.18 and 0.09, respectively. For OC/EC, the values were 4.58 and 9.13, respectively, for long-range transport and near source of biomass burning. Furthermore, the ratio of total dicarboxylic acids to levoglucosan was calculated at around 4.55. In using the ratio of levoglucosan to potassium ion as a reference for assessing different phases of biomass burning, the value was 0.023 for flaming phase and 0.044 for smoldering phase. In summary, this study demonstrates a contrast of aerosol properties from biomass burning between near source and long-range transport.
關鍵字(中) ★ 生質燃燒氣膠
★ 長程傳輸氣膠
★ 近污染源氣膠
★ 氣膠指標
關鍵字(英) ★ biomass burning aerosols
★ long-range transport
★ near source aerosols
★ aerosol tracers
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 氣膠的來源與特性 4
2.1.1 氣膠的類型、來源及生成 4
2.1.2 氣膠的特性 5
2.1.2.1 物理特性 5
2.1.2.2 化學特性 7
2.2 高山氣膠特性 10
2.3 生質燃燒 11
2.3.1 生質燃燒來源 12
2.3.2 生質燃燒過程 14
2.3.3 生質燃燒氣體特性 14
2.3.4 生質燃燒氣膠的生成 15
2.3.5 生質燃燒氣膠光學特性 15
2.3.6 生質燃燒氣膠物理特性 16
2.3.7 生質燃燒氣膠化學特性 16
2.3.7.1 水溶性離子 17
2.3.7.2 元素成分 18
2.3.7.3 碳成分 19
2.3.7.4 氣膠有機物 20
2.3.8 亞洲污染物與生質燃燒傳輸機制 25
2.3.9 不同燃燒狀態-悶燒與燃燒 26
2.3.10 燃燒煙霧氣膠長程傳輸特性 27
2.3.10.1 新生成煙霧氣膠 27
2.3.10.2 老化煙霧氣膠 28
2.4 生質燃燒氣膠對人體及環境的影響 31
2.4.1 對人體的影響 31
2.4.2 對環境的影響 31
第三章 研究方法 33
3.1 採樣地點描述 35
3.2 採樣設備 37
3.2.1 人工採樣器 37
3.2.2 自動監測儀器 39
3.3 生質燃燒源頭採樣實驗 40
3.4 農廢燃燒事件現地採樣 41
3.5 樣本分析方法 41
3.5.1 氣膠質量秤重分析 41
3.5.2 氣膠水溶性離子分析 42
3.5.3 氣膠碳成分分析 43
3.5.4 氣膠有機成分分析 45
3.6 氣膠污染來源及貢獻量的評估 50
3.7 判斷生質燃燒發生的方法 54
第四章 結果與討論 57
4.1 鹿林山高山氣膠特性(背景氣膠) 58
4.1.1 天氣、環境狀況及軌跡線描述 58
4.1.2 高山氣膠質量濃度 61
4.1.3 高山氣膠水溶性離子特性 63
4.1.4 高山氣膠碳成分特性 67
4.1.5 高山氣膠有機成分特性 73
4.1.6 高山氣膠相關研究的比較 75
4.1.7 雲霧氣膠 79
4.2 生質燃燒氣膠特性 81
4.2.1 天氣、環境狀況及軌跡線描述 84
4.2.2 生質燃燒影響時間 85
4.2.3 生質燃燒氣膠質量濃度影響程度 87
4.2.4 生質燃燒氣膠水溶性離子特性 90
4.2.5 生質燃燒氣膠碳成分特性 94
4.2.6 生質燃燒氣膠有機成分特性 104
4.2.7 生質燃燒事件影響期間特殊事件 108
4.3 背景與生質燃燒事件日氣膠特性比較 109
4.3.1 氣膠質量濃度的影響 109
4.3.2 氣膠水溶性離子及結合型態 114
4.3.3 氣膠碳成分 124
4.3.4 氣膠有機成分 131
4.4 各軌跡類型氣膠特性探討 137
4.4.1 軌跡類型分類 137
4.4.2 各軌跡類型氣膠質量濃度 139
4.4.3 水溶性離子 141
4.4.4 碳成分 145
4.4.5 有機成分 149
4.4.6 各氣流軌跡傳輸類型離子比值 152
4.5 近生質燃燒源頭氣膠特性 153
4.5.1 燃燒狀態氣膠特性 154
4.5.2 悶燒狀態氣膠特性 168
4.5.3 燃燒及悶燒狀態氣膠特性比較 183
4.5.4 華山松氣膠特性 201
4.5.5 不同種類植物燃燒氣膠特性 209
4.6 農廢物現地燃燒氣膠特性 218
4.6.1 採樣地點描述及天氣情況 218
4.6.2 新生氣膠 220
4.6.3 老化氣膠 232
4.6.4 新生與老化氣膠特性比較 242
4.6.5 近污染源及長程傳輸生質燃燒氣膠特性 250
第五章 結論與建議 257
5.1 結論 257
5.2 建議 259
參考文獻 261
附錄一 口試委員意見及回覆 275
附錄二 鹿林山觀測期間700 hPa氣流場 278
附錄三 鹿林山觀測期間850及700 hPa垂直上升速度場 288
附錄四 鹿林山生質燃燒事件日觀測期間美國自然災害網每日火點發生地點照片 308
附錄五 台灣及鹿林山地理位置圖 311
參考文獻 黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文
秦若鈺,2004。大氣常見有機物分析及有機/無機混合氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文
94年度「環保署/國科會空污防制科研合作計畫」期中報告,NSC-94-EPA-Z-008-003
Abas, M. R., Oros, D. R., Simoneit, B. R. T., 2004. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089-1095.
Abas, M. R., Rahman, N. A., Omar, M. J., Maah, M. J., Samah, A. A., Oros, D. R., Otto, A., Simoneit, B. R. T., 2004. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumper, Malaysia. Atmospheric Environment, 38, 4223-4241.
Abas, M. R., Simoneit, B. R. T., 1996. Composition of extractable organics matter of air particles from Malaysia:initial study. Atmospheric Environment, 30, 2779-2793.
Akselsson et al., 1995. “Aerosoler”. Dept. of Nuclear Physics, Lund Univerity.
Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harrriss, R. C., Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Silvia Dias, P. L., Talbot, R. W., Torres, A. L., and Wolfsy, S. C., 1988. Biomass burning emissions and associated haze layers over Amazonia. Journal of Geophysical Research, 93, 1509-1527.
Andreae, M. O. and Crutzen, P. J., 1997. Atmospheric aerosol:constituent of airborne particle in atmospheric chemistry. Science, 276(5315), 1052-1058.
Andreae, M. O., and Merlet, P., 2001. Emissions of trace gases and aerosols from biomass burning. Globlal biogeochem. Cycles, 15, 955-966.
Andreae, M. O., et al., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa , 2, Aerosol chemical composition. Journal of Geophysical Research, 103, 32119-32128.
Aneja, V. P., Murthy, A. B., Battye, W., Babecca, B., and Benjey, W.G., 1998. Analysis of ammonia and aerosol concentrations and deposition near the free troposphere at Mt. Mitchell, NC, U.S.A.. Atmospheric Environment, 32(3), 353-358.
Artazo-P, G.-F., Yamasoe-MA, Martins-J, 1994. Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin. Journal of Geophysical Research, 99(D11), 22857-22868.
Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Gupta, P. K., Ghosh, A. B., Jain, S. L., Gera, B. S., Singh, R., Sarkar, A. K., Singh, N., Parmar, R. S., Koul, S., Kohli, R., Nath, S., Ojha, V. K., Singh, G., 2004. Characterization of aerosols from biomass burning – a case study from Mizoram(Northeast), India. Chemosphere, 54, 167-175.
Bange, H. W., and Williams, J., 2000. New directions: Acetonitrile in atmospheric and biogeochemical cycles. Atmospheric Environment, 34(28), 4959-4960.
Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M., 2001b. Asian chemical outflow to the Pacific: Origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097-23114.
Cachier, H., Liousse, C., Buat-Menard, P., and Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123-148.
Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., Green, M. C., 2004. Source profiles for industrial, mobile, amd area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54, 185-208.
Crutzen, P. J., Andreae, M. O., 1990. Biomass burning in the Tropics:impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669-1678.
Crutzen, P.J., Carmichael, G.R., 1993. Modelling the influence of fires on atmospheric chemistry. Emissions from the combustion process in vegetation. In:Crutzen, P.J., Goldammer, J.G.(eds)Fire in the environment:the ecological, atmospheric and climatic importance of vegetation fires, Dahlem Worksh Rep. Environmental Sciences Research Rep 13. Wiley, Chichester, 89-105.
Dutkiewicz, V. A., Parekh, P. P., Husain, L., 1987. An evaluation of regional elemental signatures relevant to the Northeastern United States. Atmospheric Environment, 21, 1033-1044.
Eatough, D.J., Eatough, N.L., Pang, Y., Sizemore, S., Kirchstetter, T.W., Novakov, T., and Hobbs,P.V., 2003. Semi volatile particulate organic material in southern Africa durning SAFARI 2000. Journal of Geophysical Research, 108, D13, 8479, doi:10.1029/2002JD002296.
Echalar, F., Gaudichet, A., et al., 1995. Aerosol emission by tropical forest and savanna biomass burning:characteristic trace elements and fluxes. Geophysical Research Letters, 22(22), 3039-3042.
Edye, L.A., Richards, G.N., 1991. Analysis of condensates from wood smoke:components derived from polysaccharides and lignins. Environmental Science and Technology, 25, 1133-1137.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W.,and Artaxo, P., 2004. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics Discussions, 4, 6867-6907.
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., Tong, S. L., 1999. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies. Atmospheric Environment, 33, 783-795.
Ferek, R. J., Reid, J. S., Hobbs, P. V. Blake, D. R., and Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103, 32107-32118.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and Andreae, M. O., 2003. Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative(SAFARI2000)experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108, D13, doi:1029/2002JD002408.
Frenklach, M., 2002. Reaction mechanism of soot formation in flames. Phy. Chem. Chem. Phys, 4, 2028-2037.
Gao, S., Hegg, D.A., Hobbs, P.V., Krichstetter, T.W., Magi, B.I., and Sadilek, M., 2003. Water-soluble organic components in aerosols associated with savanna fires in southern Africa. Journal Geophysical Research, 108, D13, 8491, doi:10.1029/2002JD002324.
Gaudichet, A., Echalar, F., Chatenet , B., Quisefit, J. P., Maligret, G., Cachier, H., Menard, P. B., Artaxo, P., and Maenhaut, W., 1995. Trace elementnts in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry, 22, 19-39.
Glassman, I., 1988. Soot formation in combustion processes, in Twenty-Second Symposium(International)on combustion. The Combustion Institute, Pittsburgh, pp. 295.
Glassman, I., 1998. In Twenty-Seventh Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1589–1596.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari. S., Facchini, M. C., Artaxo, P., Maenhaut, W., Köll, D., and Andreae, M. O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. Journal of Geophysical Research, 107(D20), 8047, doi:10.1029/2001JD000336, LBA 14, 1-16.
Hawthorne, S. B., Miller, D. J., Langenfeld, J. J., Krieger, M. S., 1992. PM10 high volume collevtion and quantitation of semi- and nonvolatile phenols, methoxylated phenols, alkanes and polycyclic aromatic hydrocarbons for winter urban air and their relationship to wood smoke emissions. Environmental Science and Technology, 26, 2251-2262.
Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and Weber, R. J., 2005. A large organic aerosol source in the free troposphere mission from current models.
Heil, A., Goldammer, J. G., 2001. Smoke-haze pollution:a revire of the 1997 episode in Southeast Asia. Reg. Environ. Change, 2, 24-37.
Henning, S., Weingartner, E., Schwikowski, M., Gäggeler, H.W., Gehrig, R., Hinz, K.-P., Trimborn, A., Spengler, B., and Baltensperger, U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch(3580m asl). Journal Geophysical Research, 108, D1, 4030, doi:10.1029/2002JD002439.
Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H., Schade, G., and Crutzen, P. J., 1999. Biomass burning as a sources of formaldehyde, acetaldehyde, methano, acetone, acetonitrile, and hydrogen cyanide. Geophyics Research Letter, 26(8), 1161-1164.
Hueglin, C., Gaegauf, C. et al., 1997. Characterization of wood combustion particles:Morphology, Mobility, and Photoelectric Activity, Pediatrics, 75(3), 587-593.
Jänicke, R., 1993. Tropospheric aerosols. In:Hobbs PV(ed)Aerosol-cloud-climate interactions. International Geophysics Series 54. Academic Press, San Diego.
Kiehl, J. T., Rpdhe, H., 1995. Modeling geographical and seasonal forcing due to aerosols. In: Charlson , R. J., Heintzenberg, J.(Eds.), Aerosol Forcing of Climate. Wiley, New York, 281-296.
Kotchenruther, R., and Hobbs, P. V., 1998. Hunidification factors of aerosol from biomass burning in Brazil. Journal of Geophysical Research, 103, 32081-32090.
Kuhlbusch, T. A. J., and Crutzen, P. I., 1996. Black carbon, the carbon cycle, and atmospheric carbon dioxide. In Biomas burning and global change. Edited by J. S. Levine, MIT Press, Cambridge, Mass, 160-169.
Lammel, G. and Novakov, T., 1995. Water nucleation properties of carbon black and diesel soot particles. Atmosphere Envrionment, 29, 812-821.
Larson and Koenig, 1994. Wood smoke:Emissions and noncancer respiratory effects. Annu. Rev. Public Health, 15, 133-156.
Li, W., Hopke, P. K., 1993. Initial size distribution and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and Technology, 19, 305-316.
Li, J., Posfai, M., Hobbs, P.V., and Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa:2. Composition and aging of inorganic particles. Journal Geophysical Research, 34, 9-22.
Liu, X. D., Van Espen, P., Adams, F., Cafmeyer, J., and Maenhaut, W., 2000. Biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 36, 135-155.
Liousse, C., Devaux, C., Dulac, F., and Cachier, H., 1995. Aging of savanna biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 22, 1-17.
Lobert, Y. M., Warnatz, J., 1993. Emissions from the combustion process in vegetation. In:Crutzen P.J., Goldammer, J.G. Fire in the environment. The ecological, atmospheric and climatic importance of vegetation fires. Dahlem Worksh Rep, Environmental Sciences Research Rep, 13. Wiley, Chichester, 15-37.
Locker, H. B., 1988. The use of levoglucosan to assess the environmental impact of residential wood-burning on air quality. Ph.D. Thesis, Dartmouth College, Hanover, NH, 137.
Mazurek, M. A., Cass, G. R., Simoneit, B.R.T., 1991. Biological input to visibility-reducing aerosol particles in the remote arid southwestern United States. Environmental Science and Technology, 25, 684-694.
Mitra, A. P., Morawska, L., Sharma, C., Zhang, J., 2002. Chapter two:methodologies for characterization of combustion sources and for quantification of their emissions. Chemosphere, 49, 903-922.
Morawska, L., Bofinger, N. D., Kosic, L., Nwankwoala, A., 1998a. Submicron and supermicron particles from diesel vehicle emissions. Environmental Science and Technology, 32(14), 2033-2042.
Morawska, L., Jamriska, M., Bofinger, N. D., 1997. Size characteristics and aging of the environmental tobacco smoke. The Science of the Total Environmental, 196, 43-55.
Morawska, L., Zhang, J., 2002. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 49, 1045-1058.
Nakajima, T., Higurashi, A., Tekeuchi, N., Herman, J.R., 1999. Satellite and ground-base study of optical properties of 1997 Indonesian forest fire aerosols. Geophysical Research Letter, 26(16), 2421-2424.
Niemi, J. V., Tervahattu, H., Vehkamäki, H., Kulmala, M., Koskentalo, T., Sillampää, M., Rantamäki, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38, 5003-5012.
Novakov, T., Hegg, D. A., and Hobbs, P. V., 1997. Airborne measurements of carbonaceous aerosols on the East Coast of the United States. Journal of Geophysical Research, 102, 30023-30030.
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454m), Switzerland. Journal of Aerosol Science, 27, S105-S106.
Ojanen, C., Pakkanen, T., Aurela, M., Mäkelä, T., Meriläinen, J., Hillamo, R., Aarnio, P., Koskentalo, T., Hämekoski, K., Rantanen, L., Lappi, M., 1998. Size distribution, composition and sources of inhalable particles in the Helsinki metropolitan area(in Finnish with an abstrace in English). Pääkaupunkiseudun julkaisusarja C7. Helsinki Metropolitan Area Council(YTV), Helsinki.
Oros, D. R. and Simoneit, B. R. T., 2000. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79, 515-536.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Mäkelä, T., Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W., 2001b. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381-5391.
Petterson, R.C., 1984. The chemical composition of wood. In:Rowell, R. (Ed.), Chemistry of Solid Wood, Adv. Chem. Series 207. American Chemical Society, Washington, DC, 57-126.
Prasad, V. K., Kant, Y., Gupta, Y. K., Sharma, C., Mitra, A. P., Badarinath, K. V. S., 2001. Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India. Atmospheric Environment, 35, 3085-3095.
Rastogi, N., and Sarin, M. M., 2005. Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: Role of mineral dust and anthropogenic sources. Atmospheric Environment, 39, 5541-5554.
Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment, 35, 1105-1109.
Reddy, M. S., and Venkatarman, C., 2002. Inventory of aerosol and sulphur dioxide emission from India. Fossil fuel combustion. Atmospheric Environment, 36, 677-697.
Reid, J. S., Hobbs, P. V., Liousse, C., Martins, J. V., Weiss, R. E., and Eck, T. F., 1998a. Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. Journal of Geophysical Research, 103, 32031-32040.
Reid, J.S., Hobbs, P.V., Ferek, R.J., Blake, D.R., Martins, J.V., Dunlap, M.R., and Liousse, C., 1998b. Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 103, 32059-32080.
Reid, J.S., Koppmann, R., Eck, T.F. and Eleuterio, D.P., 2004. A review of biomass burning emissions, partⅡ:Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics Discussions, 4, 5135-5200.
Rogers, C.F., Hidson, J.G., Zeilinska, B., Tanner, R.L., Hallett, J.,Watson, J.G., 1991. Cloud condensation nuclei from biomass burning, in global biomass burning:Atmospheric, Climatic, and Biospheric Implications, edited by Levine, J.S., 431-440, MIT Prerss, Cambridge, MA.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1993a. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science and Technology, 27, 2700-2711.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1993b. Quantification of organic aerosols on a molecular level:identification, abundance and seasonal variation. In: proceedings of the Fourth International Conference on Carbonaceous Particles in the Atmosphere. Atmospheric Environment, 27A, 1309-1330.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1998. Sources of fine organic aerosol:9. Pine, oak, and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13-22.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science and Technology, 25, 1112-1125.
Ruellan, S., Cachier, H., Gaudichet, A., Masclet, P., and Lacaux, J. P., 1999. Air-borne aerosols over Africa during the Experiment for Regional Sources and Sinks of Oxidants(EXPRESSO). Journal of Geophysical Research, 104, 30673-30690.
Ryu, S. Y., Kim, J. E., Zhuanshi, H., and Kim, Y. J., 2004. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of Air & Waste Manage. Assoc., 54, 1124-1137.
Sandberg, D. and Martin, R., 1975. Particle sizes in slash fire smoke, Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Salam, A., Bauer, H., Kassin, K., Ullah, S.M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Nengal(Bhola-Bangladesh). J. Envrion. Monit, 5, 483-490.
Saxena, P., Hildemann, L.M., McMurry, P.H., Seifeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research, 100, 18755-18770.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1996. Source apportionement of airborne particularte matter using organic compounds as tracers. Atmospheric Environment, 30, 3837-3855.
Schlolnik, G., Fa;lpvich, A. H., Rudich, Y., Maenhaut, W., and Artaxo, P., 2005. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater saples. Environmental Science and Technology, 39, 2744-2752.
Schroeder, W.H., Dobson, M., Kane, D.M., and Johnson, N.D., 1987. Toxic trace elements associated with airborne particulate matter:a review. Journal of Air Pollut. Assoc., 37, 1267-1285.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics. John Wiley and Sons, Inc., New York, N.Y., U.S.A.
Shafizadeh, F., 1984. The chemistry of pyrolysis and combustion. In:Rowell, R. (Ed), Chemistry of solid wood, Adv. Chem. Series 207. American Chemical Society, Washington, DC, 489-529.
Shrestha, A.B., Wake, C.P., Dibb, J.E., Mayewski, P.A., Whitlow, S.I., Carmichael, G.R., Ferm, M., 2000. Seasonal variation in aerosol concentrations and compositions in the Nepal Himalaya. Atmospheric Environment, 34, 3349-3363.
Simoneit, B.R.T., 1998. Biomerker PAHs in the environment. In:Hutzinger, O.(Ed), The Handbook of Envronmental Chemistry, Vol. 3. Springer, Berlin, 175-221.
Simoneit, B.R.T., Elias, V. O., 2000. Organic tracers from biomass burning in atmospheric particularte matter over the ocean. Marine Chemistry, 69, 301-312.
Simoneit, B.R.T., Mazurek, M. A., 1982. Organic matter of the troposphere: Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western United State. Atmospheric Environment, 16, 2139-2158.
Simoneit, B.R.T., Rogge, W. F., Lang, Q., Jaffė, R., 2000b. Molecular characterization of smoke from campfire burning of pine wood(Pinus elliottii). Chemosphere:Global Change Science 2, 107-122.
Simoneit, B.R.T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particle. Atmospheric Envrionment, 33, 173-182.
Simoneit, B.R.T., Sheng, X., Chen, J., Fu, J., Xu, Y., 1991. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment 25A, 2111-2129.
Skaar, C., 1984. Wood-water relationships. In:Rowell, R. (Ed), Chemistry of Solid Wood, Adv. Chem. Series 207. American Chemical Society, Washington, DC, 127-172.
Standley, L. J., Simoneit, B. R. T., 1994. Resin diterpenoids as tracers for biomass combustion aerosols. Journal of Atmospheric Chemistry, 18, 1-15.
Streets, D.G., Yarber, K.F., Woo, J.H., Carmichael, G.R., 2003. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles.
Turns, S.R., 1996. An introduction to combustion, Concepts and Applications, McGraw Hill, New York, 291-297.
Vedal, S., 1997. Ambient Particles and Health:Lines that Davide. Journal of the Air and Waste Management Association, 47, 551-581.
Venkataraman, C., and Friedlander, S. K., 1994a. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods and source characterization. Environmental Science and Technology, 28, 555-562.
Whitby, K. T., and Cantrell, B., 1976. Fine particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Yamasoe, M. A., Paulo, A., Miguel, A. H., and Allen, A. G., 2000. Chemical composition of aerosol particles from different emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, 34, 1641-1653.
Yokelson, R.J., Ward, D.E., Susott, R.A., Reardon, J., Griffith, D.W.T., 1997. Emissions from smouldering combustion of biomass measured by open path Fourier transform infrared spectroscopy. Journal of Geophysical Research, 12, 18865-18877.
Yu, S., 2000. Role of organic acids(formic, acetic, pyruvic and oxalic)in the formation of cloud condensation nuclei(CCN): A review. Atmospheric Research, 53, 185-217.
Zerrath, A., Krause, K., Franze, T., Schauer, C., Messerer, A., Kamm, S., Niessner, R., and Pöschl, U.. Physical and chemical characterisation of alpine aerosols at the GAW observatory schneefernerhaus on mount Zugspitze.
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明