博碩士論文 92326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.14.144.108
姓名 葉智偉(Chi-Wei Yeh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以觸媒催化分解戴奧辛於實廠與小型模廠之研究
(Evaluation of PCDD/F Decomposition over SCR Catalyst and Activated Carbon-Supported Catalysts)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) SCR早期應用在NOx之去除,後來才應用在戴奧辛之去除,利用觸媒技術對戴奧辛破壞分解已成為現今控制戴奧辛排放之主要技術。本研究分成實廠與模廠測試部份進行探討,實廠部份針對國內現有SCR場址,對戴奧辛之排放控制採樣與調查,模廠測試部份將採用觸媒(Cu/C、Fe/C、Cu-Fe/C)進行測試,探討觸媒於不同操作條件對戴奧辛催化分解能力。
實廠部分初步結果顯示金屬冶煉廠SCR對氣相戴奧辛的去除率66%,對PCDD與PCDF之去除率分別約為67.3%與 65.4%。在垃圾焚化廠方面,該廠SCR對氣相戴奧辛的去除率約為96.9%,對PCDD與PCDF之去除率分別為96.0%與 95.8%。垃圾焚化廠蜂巢狀V2O5/WO3/TiO2觸媒表面積(870 m2/m3)遠大於金屬冶煉廠平板狀V2O5/WO3/TiO2觸媒表面積(320 m2/m3) ,所以造成煙道氣流中戴奧辛與觸媒接觸頻率較高而予以催化分解,導致垃圾焚化廠對氣相戴奧辛有較佳之去除效率。
模廠部份在金屬冶煉廠煙道氣測試結果顯示,在不同溫度下(150℃、200℃、250℃)就觸媒對戴奧辛去除效率而言,三種觸媒(Cu/C、Fe/C與Cu-Fe/C)對戴奧辛的去除效率約達95 ﹪以上。就觸媒對戴奧辛破壞效率而言,在150℃時三種觸媒對戴奧辛之破壞效率約為20~30﹪,然而隨溫度的升高,Fe/C與Cu-Fe/C觸媒對戴奧辛之破壞效率越好,當在250℃時,Fe/C觸媒對戴奧辛之破壞效率高達78 ﹪。在垃圾焚化廠煙道氣測試方面,在不同溫度下(150℃、200℃、250℃)就觸媒對戴奧辛去除效率而言,二種觸媒(Cu/C與Fe/C)對戴奧辛的去除效率約達90 ﹪以上。就觸媒對戴奧辛破壞效率而言,在150℃時觸媒之破壞效率約為30~40 ﹪,然而隨溫度的升高,Fe/C觸媒在200℃時對戴奧辛之破壞效率達66 ﹪,當在250℃時對戴奧辛之破壞效率降為57 ﹪。
在金屬冶煉廠煙道氣測試時使用Cu/C觸媒於200℃與250℃時與Cu-Fe/C觸媒於250℃時,觸媒上皆有戴奧辛生成現象產生,在進流組成不同之垃圾焚化廠煙道氣測試,Cu/C觸媒於250℃時,觸媒上有戴奧辛生成現象產生,顯示觸媒上含有Cu催化金屬和Fe催化金屬相較之下,含有Cu催化金屬利於戴奧辛之再生成發生,然而在200℃時於金屬冶煉廠煙道氣測試,Cu-Fe/C觸媒中也含有Cu催化金屬,但並未見明顯生成,可能和Cu催化金屬含量多寡及操作溫度有關。
摘要(英) SCR was mainly applied to removal of NOx as initially developed and now it has been used to abate dioxin emissions as well. Presently, abatement of dioxin using catalysis has become the mainstream technology. This study can be divided into two parts including field tests and pilot-scale system tests. The former focuses on sampling and investigating the control of dioxin emissions for existing SCR devices. The latter utilized several kinds of activated carbon-supported catalysts (Cu/C, Fe/C and Cu-Fe/C) to evaluate the feasibility of removing dioxins.
Regarding the tests conducted in field, the results showed that removal efficiency of gas-phase dioxin achieved with SCR at metal smelting factory was 66% while that of PCDD and PCDF were 67.6% and 65.4%, respectively. For the MSWI, the SCR could remove 95% of gas-phase dioxin, in which 96% of PCDD and 97% of PCDF were removed. The surface area of the honeycomb-type V2O5/WO3/TiO2 catalyst (870m2/m3) adopted by MSWI is much higher than that of plate-type V2O5/WO3/TiO2 catalyst (320 m2/m3) utilized by metal smelting factory, resulting in the higher removal efficiency obtained in MSWI.
The source of pilot-scale system sampling in metal smelting factory conducted the removal efficiencies achieved by utilizing Cu/C, Fe/C and Cu-Fe/C catalysts were as high as 95%. As for source of pilot-scale system sampling in the MSWI, the removal efficiencies achieved with Cu/C and Fe/C catalysts were more than 90%.
In the metal smelting factory, the destruction efficiencies of three catalysts at 150℃ were about 20-30%. However, the destruction efficiencies obtained with Fe/C and Cu-Fe/C catalysts increased with increasing temperature. At 250℃, the destruction efficiency achieved with Fe/C catalyst was 78%. In the MSWI, the destruction efficiencies obtained with activated carbon-supported catalysts (Cu/C and Fe/C) were 30-40% when the temperature was kept at 150℃. For the Fe/C catalyst, the obtained destruction efficiency at 200℃ was 66%; however, once the temperature is increased to 250℃, the destruction efficiency was reduced to 57%.
For the results of metal smelting factory, dioxin were generated through catalysis when the temperature of the Cu/C catalyst was 200℃ or 250℃ and that of the Cu-Fe/C catalyst was 250℃. In the MSWI, dioxin were generated through catalysis while the temperature of the Cu/C catalyst was 250℃. Compared with the results obtained with Cu/C and Fe/C catalysts in the metal smelting factory, it can be concluded that dioxin would be more easily produced when Cu/C catalyst is applied. Although the Cu-Fe/C contained Cu as well, no dioxin was generated at 200℃, which might be relevant to the Cu content and operating temperature.
關鍵字(中) ★ SCR 觸媒
★ 活性碳載體觸媒
★ 戴奧辛
★ 催化分解
關鍵字(英) ★ dioxin
★ active carbon-supported catalyst
★ catalysis
★ SCR catalyst
論文目次 目錄
摘要 i
Abstract iii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 1
2.1 戴奧辛類化合物之基本特性 1
2.1.1 戴奧辛類化合物之結構 1
2.1.2 戴奧辛類化合物之物化特性 2
2.1.3 戴奧辛類化合物之毒性當量 4
2.2 戴奧辛類化合物對人體健康之影響 6
2.3 戴奧辛之生成機制 7
2.4 戴奧辛之控制技術 9
2.5 觸媒之特性 11
2.5.1觸媒機制與原理 11
2.5.2傳統觸媒的種類與組成 12
2.5.2.1 活性相金屬物質 13
2.5.2.2 觸媒載體 13
2.5.3 活性碳擔體觸媒之應用 15
2.6 選擇性觸媒還原之使用與控制 16
2.6.1選擇性觸媒還原法原理 16
2.6.2 以SCR控制技術去除煙道氣中戴奧辛 17
2.6.3影響SCR觸媒催化分解戴奧辛之因素 18
2.7實廠使用觸媒催化分解戴奧辛之相關研究 28
第三章 研究方法 32
3.1研究流程設計 32
3.2 採樣程序 33
3.2.1 採樣對象選擇 33
3.2.2 煙道採樣程序 33
3.2.3 觸媒上樣品取樣程序 33
3.2.4 碳基觸媒(Cu/C、Fe/C、Cu-Fe/C)製備介紹 34
3.3 實驗藥品與試劑 41
3.3.1 實驗藥品 41
3.3.2 實驗溶劑 42
3.4 實驗材料與設備 42
3.4.1 實驗材料 42
3.4.2 實驗設備 43
3.5 採樣方法 44
3.5.1 樣品瓶之清洗程序 44
3.5.2 煙道採樣設備 45
3.6 戴奧辛分析方法 52
3.6.1 戴奧辛樣品前處理 52
3.7 HRMS分析儀器條件 56
第四章 結果與討論 58
4.1金屬冶煉廠與垃圾焚化廠SCR觸媒催化分解戴奧辛 58
4.1.1 金屬冶煉廠與垃圾焚化廠之戴奧辛濃度與物種分佈 58
4.1.2 金屬冶煉廠與垃圾焚化廠SCR對戴奧辛之去除效率 59
4.2 Pilot-Scale觸媒反應系統對戴奧辛之催化分解之探討 67
4.2.1觸媒選用及基本性質說明 67
4.2.2 Pilot-Scale 觸媒反應系統操作參數與採樣位置說明 68
4.2.3 Pilot-Scale觸媒系統對戴奧辛催化分解之濃度與物種分佈 71
4.3 Pilot-Scale觸媒系統對戴奧辛之去除與破壞效率評估 83
4.3.1 Pilot-Scale觸媒系統溫度效應對戴奧辛催化反應之影響 83
4.3.2 Pilot-Scale觸媒系統進流組成不同對戴奧辛催化反應之影響 86
第五章 結論與建議 94
5.1 結論 94
5.1.1 實廠部份 94
5.1.2 小型模廠廠部份 95
5.2 建議 96
參考文獻 97
參考文獻 參考文獻
Alemany, L. J., Berti, F., Busca, G., Ramis, G., Robba, D., Toledo, G. P. and Trombetta, M., “Characterization and Composition of Commercial V2O5-WO3-TiO2 SCR Catalysts”, Applied Catalysis B: Environmental, Vol. 10, pp.299-311, 1996.
Altwicker, E. and Millgan, M.S., “Formation of Dioxins: Competing Rates between Chemical Similar Precursors and De Novo Reaction”, Chemosphere, Vol. 27, pp. 301-307, 1993.
Abad, E., Adrados, M. A., Caixach, K., Fabrellas, B. and Rivera, J., “Dioxin Mass Balance in a Municipal Waste Incinerator”, Chemosphere, Vol. 40, pp. 1143-1147, 2000.
Babushok, V. I. and Tsang, W., “Gas-Phase Mechanism for Dioxin Formation”, Chemosphere, Vol. 51, pp 1023-1029, 2003.
Ballschmiter, K., Zoller, W., Scholtz, C. and Nottrodt, A., “Destruction of PCDD and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”, Chemosphere, Vol. 12, pp. 585-597, 1983.
Bueken, A. and Huang, H., “Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxins/Furans in Municipal Waste Incineration”, Journal of Hazardous Materials, Vol. 62, pp.1-33, 1998.
Bonte, J. L., Fritsky, K. J., Plinke, M. A. and Wilken, M., “Catalytic Destruction of PCDD/F in a Fabric Filter: Experience at a Municipal Waste Incinerator in Belgium”, Waste Management, Vol. 22, pp 421-426, 2002.
Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-Catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282, 1989.
Everaert, K. and Baeyens, J., “Correlation of PCDD/F Emissions with Operating Parameters of Municipal Solid Waste Incinerators”, Journal of Air & Waste Management Association, Vol. 51, pp. 718-224, 2001.
Ghorishi, S. B. and Altwicker, E. R., “Formation of Polychlorinated Dioxins, Furans, Benzenes, and Phenols in the Post-Combustion Region of a Heterogeneous Combustor: Effect of Bed Material and Post-Combustion Temperature”, Environmental Science and Technology, Vol. 29, pp. 1156-1162, 1995.
Hofstadler, K., Friedacher, A., Gebert, W. and Lanzerstorfer, C., “Dioxins at Sinter Plants and Electric Arc Furnaces- Emissions Profiles and Removal Efficiency”, Organohalogen Compounds, Vol. 46, pp. 66-69, 2000.
Hums, E., Joisten, M., Müller, R., Sigling R. and Spielmann, H., “Innovative Lines of SCR Catalysis: NOx Reduction for Sationary Diesel Engine Exhaust Gas and Dioxin Abatement for Waste Incineration Facilities”, Catalysis Today, Vol. 27, pp.29-34, 1996.
Ide, Y., Kashiwabara, K., Okada, S., Mori T. and Hara, M., “Catalytic Decomposition of Dioxin from MSW Incinerator Flue Gas”, Chemosphere, Vol. 32, pp.189-198, 1996.
John, R. H., “Emissions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Catalytic and Thermal Oxidizers Burning Dilute Chlorinated Vapors ”, Chemosphere,Vol. 54, pp. 1539-1547, 2004.
Krishnamoorthy, S. and Amiridis, M. D., “Kinetic and in Situ FTIR Studies of the Catalytic Oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 Catalysts”, Catalysis Today, Vol. 51, pp. 203, 1999.
Krishnamoorthy, S. and Amirides, M. D., “Catalytic Oxidation of 1,2-dichlorobenzene over Supported Transition Metal Oxides”, Journal of Catalysis, Vol. 193, pp. 264-272, 2000.
Krishnamoorthy, S., Baker, J. P. and Amiridis, M. D., “Catalytic Oxidation of 1,2-dichlororbenzene over V2O5/TiO2-based Catalysts, Vol.40, Catalysis Today, pp. 39-46, 1998.
Liljelind, P., Unsworth, J., Maaskant, O. and Marklund, S., “Removal of Dioxins and Related Aromatic Hydrocarbons from Flue Gas Streams by Adsorption and Catalytic Destruction”, Chemosphere, Vol. 42, pp. 615-623, 2001.
Larrubia, M. A. and Busca, G., “An FT-IR Study of the Conversion of 2-chloropropane, o-dichlorobenzene and Dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx Catalysts” Applied Catalysis B: Environmental, Vol. 39, pp. 343-352, 2002.
Liu, Y., Luo, M., Wei, Z., Xin, Q., Ying P. and Li, C., “Catalytic Oxidation of Chlorobenzene on Supported Manganese Oxide Catalysts”, Applied Catalysis B: Environmental, Vol. 29, pp. 61-67, 2001.
McKay, G., “Dioxin Characterization, Formation and Minimization during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368, 2002.
Okumura, M., Akita, T., Haruta, M., Wang, X., Kajikawa, O. and Okada, O., “Multi-component Noble Metal Catalysts Prepared by Sequential Deposition Precipitation for Low Temperature Decomposition of Dioxin”, Applied Catalysis B: Environmental”, Vol. 41, pp. 43-52, 2003.
Schooneboom, M. H., Zoetemeijer, H. E. and Olie, K., “Dechlorination of Octachlorodibenzo-p-dioxin and Octachlorodibenzofuran on an Alumina Support”, Applied Catalysis B: Environmental, Vol. 6, pp. 11-20, 1995.
Weber, R., Sakurai, T. and Hagenmaier, H., “Low Temperature Decomposition of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3 Catalysts”, Applied Catalysis B: Environmental, Vol. 20, pp. 249-256, 1999.
Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T., Konndo, K. and Hiraoka, M., “Effects of Selected Metal Oxides on the Dechlorination and Destruction of PCDD and PCDF”, Chemosphere, Vol. 46, pp. 1247-1253, 2002.
Weber, R. and Sakurai, T., “Low Temperature Decomposition of PCB by TiO2-based V2O5-WO3 Catalyst: Evaluation of the Relevance of PCDF Formation and Insights into the First Step of Oxidative Destruction of Chlorinated Aromatics”, Applied Catalysis B: Environmental,Vol. 34, pp. 113-127, 2001.
Wikstrom, E., Ryan, S., Touati, A. and Gullett, B. K., “In Situ Formed Soot Deposit as a Carbon Source for Polychlorinated Dibenzo-p-dioxins and Dibenzofurans”, Environmental Science and Technology, Vol. 38, pp. 2097-2101, 2004.
Xhrouet, C., Nadin, C. and Pauw, E. D., “Amines Compounds as Inhibitors of PCDD/Fs De Novo Formation on Sintering Process Fly Ash”, Environmental Science and Technology, Vol. 36, pp.2760-2765, 2002.
Yim, S.D., Koh, D. J. and Nam, I. S., “A Pilot Plant Study for Catalytic Decomposition of PCDDs/PCDFs over Supported Chromium Oxide Catalysts”, Catalysis Today, Vol. 75, pp. 269-276, 2002.
Zhenping, Z. C., Zhenyu, L., Shoujun, L., Hongxian, N., Tiandon, Hu. and Tao, L., “NO Reduction with NH3 over an Actived Carbon-supported Copper Oxide Catalysts at Low Temperature”, Applied Catalysis B: Environmental,Vol.26, pp. 25-35, 2000.
王奕凱、邱宏明、李秉傑, 「非均勻系催化原理與應用」, 渤海堂文化事業有限公司, 民國77年2月初版。
胡興中, 「觸媒原理與應用」,高立圖書有限公司, 民國91年1月。
吳榮宗, 「工業觸媒概論」,國興出版社, 新竹(1998)。
謝瑜芬,”以SCR觸媒破壞氣相中戴奧辛之初步探討”,碩士論文,國立中央大學環工所,2003。
鄭銚強,”焚化系統中抑制戴奧辛生成之初步研究”,碩士論文,國立中央大學環工所,2003。
傅正豪, ”活性碳擔體觸媒對酸性氣體之研究”,碩士論文,國立中興大學環工所,2003。
徐禮業, ”利用銅在碳及其他載體上為觸媒以NH3還原NO反應之研究”,博士論文,國立成功大學化工所,2003。
林家欣, ”釩鈦觸媒孔隙擴散限制與及表面酸性之研究”,博士論文,國立交通大學環工所,2003。
指導教授 張木彬(Moo-Been Chang) 審核日期 2005-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明