博碩士論文 92333002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:44.200.169.3
姓名 謝育和(Yue-ho Hsieh)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 支撐性金觸媒對密閉型二氧化碳雷射之影響
(Study of A Sealed-Off CO2 Laser with Supported Gold Catalyst)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要是研究支撐性金觸媒(TiO2-Au)應用於密閉型二氧化碳雷射對雷射輸出能量及穩定輸出的可能性研究,希望藉由此研究能夠了解支撐性金觸媒在不同氣體組成及放電條件下對於雷射輸出功率的影響。
作法是利用密閉型二氧化碳雷射製作技術直流放電激勵,密閉管型二氧化碳雷射之技術主要包括:高真空封閉的技術,電極材料,氣體組成控制,光腔結構等項目。本研究雷射管採用 Pyrex玻璃管內鍍支撐性(TiO2-Au)金觸媒為一新的嘗試,和現在主要製程電漿濺射法(Sputter-Au)比較有製程簡單及容易量產之優點。
由實驗結果顯示,嘗試使用還原法將奈米金顆粒直接將玻璃管當載體的結果不成功,實驗也嘗試比對電漿濺射法金觸媒對雷射管的影響,發現修改雷射共振腔結構後可以得到類似國外雷射管水準。以支撐性金觸媒製作之密閉管型二氧化碳雷射,可以得到雷射輸出功率,在10.6微米波長及連續波操作下,達到86.4W,從120cm長度的有效氣體放電區域,每公尺的平均輸出功率是72Watt/meter ,且測試累積計錄約在260小時(11工作天) 。從超過幾百小時長時間的觀察,雷射管呈現功率的衰減。這裡仍須探討雷射功率衰減或不穩定的因素,其中之一即真空加熱的問題,對雷射管的潔淨有很大影響;另外,雷射氣體分別從國內及國外取得,其氣體純度及組成百分比準確的控制是否影響雷射的性能,仍須實驗驗證。
摘要(英) A sealed-off CO2 laser has TiO2-supported gold catalyst coated on the inner wall. The laser power increase and the long term stability were studied to understand the effect of gold catalyst on the laser power output of the laser tube in different running condition.
In this study, we used integrated experiences on sealed-off CO2 laser tube manufacturing technique which included high vacuum sealed-off technique, electrode materials, gas composition, resonator structure, etc. We used Pyrex glass laser tube that was coated by Au/TiO2 catalyst using a sol-gel method. This is a new feature in this study and different from major commercial products, which usually use sputtered unsupported Au particles. Our method has the advantage of being able to be easily integrated to mass production procedure compare to the sputtering method.
From the experimental results, trying to use reduction method and putting the gold catalyst on glass tube as the carrier failed to get good results. We also try to compare the sputtering Au catalyst on the laser tube. After modifing the laser resonator structure we can get performance comparable to commercial laser tubes. The TiO2-supported gold catalyst sealed-off CO2 laser tube delivered an optical power of 86.4W for 10.6 μm continuous-wave operation. The power level can reach 72 Watts/meter base on the tube length of 120 cm. The accumulated operation time was more than 260 hours (11 days). From a few hundred hours of laser operation we noticed that the laser power drift which can originate from several factors, such as the vacuum heating, vacuum seal materials and method, laser gas composition and purity have to be verified through experiments.
關鍵字(中) ★ 支撐性金觸媒
★ 密閉型二氧化碳雷射
★ Pyrex雷射管
關鍵字(英) ★ TiO2-supported gold catalyst
★ Sealed-off CO2 laser
★ Pyrex laser tube
論文目次 目錄
中文摘要----------------------------------------------------------Ⅰ
英文摘要----------------------------------------------------------Ⅲ
誌謝-------------------- -----------------------------------------Ⅴ
目錄--------------------------------------------------------------Ⅵ
表目錄------------------------------------------------------------Ⅷ
圖目錄------------------------------------------------------------Ⅸ
第一章 緒論---- ---------------------------------------------------1
1.1 前言-----------------------------------------------------------1
1.2 發展背景-------------------------------------------------------2
1.3 直流密閉型二氧化碳雷射之最新發展-------------------------------3
1.4 文獻回顧-------------------------------------------------------4
1.5 研究目的-------------------------------------------------------6
第二章 密閉式二氧化碳雷射理論 -------------------------------------7
2.1 二氧化碳雷射之基本理論-----------------------------------------7
2.2 金觸媒對密閉型二氧化碳雷射效能影響----------------------------12
第三章 實驗方法與實驗設備-----------------------------------------14
3.1 內鏡型參層Pyrex密閉型雷射管製作-------------------------------14
3.2 金觸媒製備方式------------------------------------------------18
3.3 支撐性金觸媒(TiO 2-Au)製備------------------------------------21
3.4 雷射管組裝方法與流程------------------------------------------24
第四章 結果與討論-------------------------------------------------30
4.1 不同雷射管比較測試--------------------------------------------31
4.2 支撐性金觸媒(TiO2-Au)雷射管可靠度測試-------------------------36
4.3 雷射光學設計與光模--------------------------------------------37
第五章 結論-------------------------------------------------------38
參考文獻----------------------------------------------------------80
參考文獻 參考文獻
1. 謝育和,洪天河,謝太炯,”Study of A Sealed-Off CO2 Laser with Supported Gold
Catalyst,”台灣光電科技研討會,國立台北科技大學,C-SA-V10,OPT-2003.
2. 謝育和,洪天河,謝太炯,”Effects of Gold Catalyst on Sealed-Off CO2 Laser,”台
灣光電科技研討會,國立成功大學, PC-FR2-23,OPT-2005.
3. 謝太炯,”密閉型二氧化碳雷射管國內量產計畫,” 國科會小產學計畫, NSC 92-2622-E-
009-018-CC3.
4. 藍元亮,”密閉型二氧化碳雷射特性之研究,” 國立交通大學光電所博士論文,(1992).
5. T.C. Hsieh and Y.L. Lan, “Oxide conductive coated cathodes for a sealed-off
CO2 laser,” Appl. Phys. Lett., vol. 51(16), (1987).
6. Y.L. Lan and T.C. Hsieh, ”Mass Spectrometric Measurements of CO2 Laser
Discharges with Time Resolution,” Jpn. J. Appl., vol. 31, pp. 2435-2439
(1992).
7. H.G. Rubahn, Laser Applications in Surface Science and Technology, Wiley,
New York, pp. 53-73 (1999).
8. W.M. Steen, Laser Material Processing, Springer, New York, Second Edition,
pp. 103-141 (2001).
9. C.K.N. Patel, ”Interpretation of CO2 optical maser experiments,” Phys.
Lett., vol. 12(21), pp. 588-590 (1964).
10. J.A. Macken, ”CO2 Laser Performance with a Distributed Gold Catalyst,”
IEEE Journal of Quantum Electronics, vol. QE 25(7), pp. 1695-1703 (1989).
11. 陳永杰, ”催化CO氧化之金觸媒的製備與特性分析,"國立清華大學化學系碩士論文
(1998).
12. 林俊男, ”奈米金顆粒的開發與在燃燒催化上的應用,"國立台灣大學化學系博士論文
(2002).
13. Y.J. Chen and C.T. Yeh, ”Deposition of Highly Dispersed Gold on Alumina
Support, ” Journal of Catalysis 200, pp. 59-68 (2001).
14. J.H. Lin, Y.S. Chi and B.Z. Wan, ”Design of a high-performance catalyst
for CO oxidation:Au nanoparticles confined in mesoporous
aluminosilicate,” Catalysis Today, vol. 93-95, pp. 141-47 (2004).
15. Y.T. Junichi and M.S. Tsubota, ”Oxidation of carbon monoxide on Au
nanoparticles in titania and titania-coated silica aerogels,” Applied
catalysis A:General 268, pp. 183-187 (2004).
16. P. Li and D.E. Miser, ”The removal of carbon monoxide by iron oxide
nanoparticles,” Applied catalysis B. Environmental, vol. 43, pp. 151-162
(2003).
17. C.K. Chang and Y.J. Chen and C.T Yeh, ”Characterization of alumina-
supported gold with temperature-programmed reduction,” Applied catalysis
A:General 174, pp. 13-23 (1998).
18. G.M. Veith and A.R. Lupin, ”Nanoparticles of gold on r-Al2O3 produced by
DC magnetron sputtering,” Journal of catalysis, vol.80
231, pp. 151-158 (2005).
19. K. Mallick, J.W. Mike and S.S. Mike, ”Simplified single-step route for the
preparation of a highly active gold-based catalyst for CO oxidation,
“Journal of Mocular Catalysis A:Chemical 215, pp. 103-106 (2004).
20. K. Mallick, J.W. Mike and S.S. Mike, “Supported gold catalyst prepared by
in situ reduction technique: preparation, characterization and catalytic
activity measurements,” Applied Catalysis A: General 259, pp. 163-168
(2004).
21. M.M. Schubert and H. Stefan, ”CO Oxidation over supported Gold Catalysts-
“Inert” and “Active” support Materials and Their Role for the Oxygen
Supply during Reaction,” Journal of Catalysis 197, pp. 113-122 (2001).
22. S. Sabine and C. Martin, ”Supported gold nanoparticles: in-depth catalyst
characterization and application in hydrogenation and oxidation
reactions,” Catalysis Today 72, pp. 63-78 (2002).
23. W. J. Witteman, The CO2 Laser, Springer, New York, pp. 108,157 (1987).
24. C.K.N. Patel, ”Selective excitation through vibrational energy transfer
and optical maser action in N2-CO2,” Phys. Lett., vol. 13(21), pp. 617-619
(1964).
25. 林宏英, ”氣體溫度對密閉式二氧化碳雷射操作之影響模擬分析, "國立交通大學電物
系碩士論文 (1997).
26. C.K.N. Patel, P.K. Tien and J.H. Mcfee, ”CW high-power CO2-N2-He laser,”
Appl. Phys. Lett., vol. 7(11), pp. 290-292 (1964).
27. G.D. Boyd and J.P. Gordon, ”Confocal multimode resonator for millimeter
through optical wavelength masers,” Bell syst. Tech. J. 40. 489 (1961).
28. H. Kogelnik and T. Li, ”Laser beams and resonators,” Proc. IEEE 54: 1312,
(1996).
29. T.S. Fahlen, “CO2 Laser Design Procedure,” Applied Optics, vol. 12(10),
pp. 2381-2390 (1973).
30. N. Khan and N. Mariun, ”Design and experimental characterization of a DC-
excited CW/repetitively pulsed sealed off CO2 laser,” Optics & Laser
Technology, 3687-94 (2004).
31. D.E. James, Selected Papers on CO2 Lasers, SPIE milestone series vol. MS22,
pp. 1-537 (1990).
32. NASA Conference Publication 3076, Low-Temperature CO-Oxidation Catalyst for
Long-Life CO2 Lasers, pp. 123-137 (1990).
33. 李建興, 黃國正, 王必昌, 謝育和, ”封閉型二氧化碳雷射之熱流性能分析,"中國機
械工程學會第二十一屆全國學術研討會論文集 ,國立中山大學,(2004).
34. Smith, Modern Optical Engineering, SPIE press, Mcgraw-hill companies, New
York, pp. 173-216, Third Edition (2000).
35. T.G. Fisher, Optical System Design, SPIE press, Mcgraw-hill companies, New
York, pp. 203-215 (2001).
36. 黃文遠, ”氦氖雷射之設計與製造,"精密儀器發展中心 (1991).
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2006-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明