博碩士論文 92342012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.149.243.161
姓名 李伯亨(Bo-Heng Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 裂縫入滲及Hele-Shaw模擬土體之滲流特性分析
(The Effects of Crack Infiltration and Hele-Shaw Modeling the Seepage Flow)
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文重點在於探討未碰觸底床(不透水層或岩盤)之裂縫暫態入滲特性,並討論以裂縫內水深為坡體上游,沿著底床穩態滲流形成之自由滲流液面(簡稱滲流表面線)與坡體下游邊界之滲出點高程。本文實驗主軸以Hele-Shaw模型實驗,觀測裂縫暫態入滲濕鋒範圍、流量等特性,分析以Green-Ampt (G-A) 假設所推導之一維及擬二維裂縫暫態入滲公式的適用範圍,再根據一維G-A裂縫入滲理論,建立隨裂縫入滲濕鋒範圍變化之孔隙水壓模式。進而,裂縫內持續供水造成下游滲出點及坡體內滲流表面線,此範圍內之滲流對土體產生負面效應。本文利用鋁粉加入Hele-Shaw模型兩板內,以流線分析討論滲流於水平及傾斜底床之滲出點與滲流表面線特性。
本研究將裂縫入滲濕鋒由外而內分為目視乾濕界面、G-A 濕鋒及飽和濕鋒等三種,以G-A 濕鋒理論推導配合砂箱及Hele-Shaw 模型進行分析與比較。一維G-A理論解適用於土壤性質為飽和水力傳導係數小、毛細效應較大及裂縫水深較大之條件,適用時間較長,孔隙水壓公式適用於此條件;反之,類比於粗顆粒土壤之Hele-Shaw結果,飽和水力傳導係數大、毛細效應較小,需要較大之裂縫水深或極小之兩板間距,方可克服重力效應,因此適用時間較短。當無因次入滲時間進入重力效應顯著階段,本文以有效寬度入滲概念,推導以等值寬度入滲之擬二維G-A理論式,並利用入滲濕鋒為A1及A2上、下兩個無因次曲線組成,可推求濕鋒形態、範圍與流量。
於穩態滲流部分,先以加入鋁粉之Hele-Shaw實驗分析流線,再以理論解析探討水平底床之滲流表面及滲出點特性,並建立隨底床角度變化之無因次滲出點高程與無因次滲流表面線公式。於水平底床滲流理論解加入隨堆積土體厚與上游水深比值呈冪次增加之B參數,所得之無因次公式較Kashef模式及Dupuit模式符合實驗流況。實驗利用兩板間距、流體密度、上游定水頭高度與堆積土體厚比值等參數控制滲流表面及滲出點有無受毛細高度及出口阻力之影響。實驗結果顯示靜壓水頭符合由表面向下遞減之拋物線假設。本理論解之滲流表面及滲出點高度與實驗結果頗相近。當上下游水深度比值大於0.9、上游水深與堆積土體厚比值小於0.1時,Dupuit假設與水平底床滲流理論解相近。於傾斜底床滲流部分,分為傾斜入出流條件與垂直入出流條件,利用流線分析資料,建立與水平底床滲流有關之無因次滲流表面線與無因次滲出點高程,用以預測不同坡度與上游水位高所造成之滲出點高程。本研究之水流成果有助於了解現場堆積顆粒或邊坡破壞機制。
摘要(英) This study explores the 2-D transient seepage flow and steady flow from cracks into different porous media, including both coarse material and fine material. The Crack Apparatus of Hele-Shaw Model is chosen to analyze the configuration of wetting front in the coarse material. Due to the effect of gravity on the flow condition, the wetting front in the coarse material is more elongated than that of the fine material. The limited width of wetting front is approaching a constant value in the coarse material. On the other hand, the effect of capillary causes the wetting front in the fine sand expands continuously as time increases. In this paper, a Green-Ampt type of conceptual model is proposed to describe the propagating process of the wetting front in different materials. The time-dependent wetting front and the corresponding wetted area are obtained in this study, which are beneficial for examining the leaky contaminant transport from cracks into different porous media or for the analysis of the slope stability problems.
The second topic of this study is development and validation of an analytical solution for the flow through horizontal and sloping bed. The parameter, B, shown in the analytical solution of horizontal bed increases with the increasing ratio of width to upstream level. The Hele–Shaw model is employed to examine the phreatic surface and exit point of seepage flow by adjusting gap width and fluids density. Aluminum powders were used to as tracking particles inside the gap and the flow visualization was performed. Both horizontal and sloping bed, the phreatic (free) surfaces and exit points are in good agreement between experimental data and the analytical solution. The assumption of a parabolic piezometric head was verified by experimental data. In the horizontal bed, the ratio of down-upstream water depth is large than 0.9 and the ratio of upstream depth -width is less than 0.1, the solution based on Dupuit model is close to the analytical solution.
關鍵字(中) ★ Green-Ampt
★ 裂縫
★ Hele-Shaw 模型
★ 濕鋒
★ 滲流表面線
★ 滲出點高程
關鍵字(英) ★ Green-Ampt
★ crack
★ Hele-Shaw
★ wetting front
★ phreatic surface
★ exit point.
論文目次 摘要 i
Absract iii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號表 xv
第一章 序論 1
1-1 研就動機 1
1-2 研究方法與目的 1
1-3 論文架構 2
第二章 二維裂縫暫態入滲過程 4
2-1 非飽和邊坡存在裂縫之降雨入滲模式 4
2-1-1 坡面開始積水時間 5
2-1-2 坡面垂直入滲量求算 6
2-1-3 裂縫上游逕流水進入裂縫之產生條件 6
2-1-4 裂縫入滲量之求算 6
2-1-5 裂縫內部積水時間 8
2-1-6 整體坡面逕流產生 9
2-2 隨入滲濕鋒變化之孔隙水壓 9
2-2-1 土層表面入滲之孔隙水壓分析 9
2-2-2 裂縫入滲孔隙水壓分析 10
2-3 裂縫入滲之實驗配置與步驟 10
2-4 裂縫對非飽和邊坡穩定之影響 16
2-4-1 模式流程分析 16
2-4-2 裂縫邊坡基本資料 17
2-4-3 非飽和裂縫邊坡入滲結果與討論 18
2-5 裂縫G-A理論式(式(2.5)、(2.7)、(2.8))之適用性探討 21
2-5-1 裂縫砂箱入滲濕鋒之特性 21
2-5-2 Hele-Shaw模型裂縫入滲濕鋒之特性 26
2-6 重力效應顯著後之暫態入滲特性 32
第三章 邊坡內滲流表面及滲出點之特性分析 38
3-1 水平底床滲流之滲流表面線及滲出點高程 39
3-1-1 水平底床滲流理論解析 39
3-1-2 以Hele-Shaw模擬水平底床滲流之配置與步驟 44
3-1-3 水平底床滲流之靜壓水頭驗證 46
3-1-4 值隨x些微變化之討論 48
3-1-5 水平底床滲流之滲出點高程討論 50
3-1-6 水平底床滲流之滲流表面線比較 52
3-1-7 水平底床滲流之Dupuit適用範圍 56
3-2 傾斜入流條件於傾斜底床之滲流表面線及滲出點高程 57
3-2-1 傾斜入流(Inclined inflow)條件時之基本假設 57
3-2-2 傾斜底床滲流之靜壓水頭討論 58
3-2-3 傾斜入流於傾斜底床之滲出點高程討論 61
3-2-4 傾斜入流於傾斜底床之滲流表面線討論 63
3-3 垂直入流條件於傾斜底床之滲流表面線及滲出點高程 72
3-3-1 垂直入流(Vertical inflow)條件時之滲流表面線 72
3-3-2 垂直入流條件時之滲出點高程討論 87
第四章 結論與建議 90
4-1 結論 90
4-2 建議 93
參考文獻 94
參考文獻 [1] 周憲德,「裂縫滲透引致淺層崩塌之臨界降雨條件分析」,中華水土保持學報,第三十四卷,第四期,第347-352頁(2003)。
[2] 周憲德、李伯亨、陳主惠,「無凝聚性堆積顆粒受滲流破壞之探討」,第十六屆水利工程研討會,苗栗,第775-782頁 (2007)。
[3] 陳樹群、游功揚,「坡地未飽和點源入滲行為之研究」,中華水土保持學報,第二十七卷,第一期,第53-59頁(1996)。
[4] 陳主惠、張守陽、周憲德、李伯亨,「入滲對非飽和邊坡淺層崩塌發生機制之研究」,中華水土保持學報,第三十五卷,第一期,第69-77頁(2004)。
[5] 李伯亨,「入滲效應與土石流發生臨界雨量線之探討及應用」,國立台北科技大學環境規劃與管理研究所碩士論文(2003)。
[6] Beven, K. J., and Clarke, R. T., “On the variation of infiltration into a homogeneous soil matrix containing a population of macrospores,” Water Resources Research, Vol. 22, No. 3, pp. 383-388 (1986).
[7] Bruch, J. C., and Street, R. L., “Free surface flow in porous media,” Journal of Irrigation and Drainage Engineering, Vol.93, No.3, pp. 125-145 (1967).
[8] Bouwer, H., Back, J. T., and Oliver, J. M., “Predicting infiltration and ground-water mounds for artificial recharge,” Journal of Hydrologic Engineering, Vol.4, No.4, pp. 350-357 (1999).
[9] Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, p.764 (1988).
[10] Billstein, M., U. Svensson, and N. Johansson, “Development and Validation of a Numerical Model of Flow through Embankment Dams–Comparisons with Experimental Data and Analytical Solutions,” Transport in Porous Media, Vol.35, pp. 395–406 (1999).
[11] Cecen, K., “On the determination of hydraulic conductivity of unsaturated soils in situ,” Proceedings of the 14th Congress of International Association for Hydraulic Research, Paris, France, Vol. 5, pp. 415-420 (1972).
[12] Crosta, G. and C. di Prisco, “On slope instability by seepage erosion,”Canadian Journal Geotechnical, Vol.36, pp.1056-1073 (1999).
[13] Cobbold, P. R., S. Durand, R. Mourgues,“Sandbox modeling of thrust wedges with fluid-assisted detachments,” Tectonophysics, Vol.334, pp. 245-258 (2001).
[14] Casagrande, A., “Seepage through Dams,” Journal of the New England Water Works Association, Vol.51, pp.131-172 (1937).
[15] Crank, J., Free and Moving Boundary Problems, Oxford University Press, New York, p.424 (1984).
[16] Childs, E. C., “Drainage of Groundwater Resting on a Sloping Bed,” Water Resources Research, Vol.7, No.5, pp.1256-1263 (1971).
[17] Chapman, T. G., “Modeling Groundwater Flow over Sloping Beds,” Water Resources Research, Vol.16, No.6, pp.1114-1118 (1980).
[18] Green, W. H., and Ampt, G. A., “Studies on soil physics: I, flow of air and water through soils,” Journal of Agriculture Science, Vol. 4, pp.1-24 (1911).
[19] Henderson, F. M. and R. A. Wooding, “Overland Flow and Groundwater from a Steady Rainfall of Finite Duration,” Journal of Geophysical Research, Vol.69, No.8, pp.1530-1540 (1964).
[20] Howard, A. D. and C. F. Mclane, “Erosion of cohesionless sediment by groundwater seepage,” Water Resources Research, Vol.24, pp.1659-1674 (1988).
[21] Iverson, R. M. and J. J. Major, “Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization,” Water Resources Research, Vol.22, pp.1543-1548 (1986).
[22] Kashef, Abdel-Aziz I., “Seepage through Earth Dam,”Journal of Geophysical Research, Vol.70, No.24, pp.6121-6128 (1965).
[23] Kashef, A. I., Groundwater Engineering, McGraw-Hill, Sigapore, p.512 (1987).
[24] Korkmaz, S. and H. Önder, “Seepage from a Rectangular Ditch to the Groundwater Table,” Journal of Irrigation and Drainage Engineering, Vol.132, No.3, pp.263-271 (2006).
[25] Mourgues, R. and P. R. Cobbold, “Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modeling,” Tectonophysics, Vol.376, pp. 75-97 (2003).
[26] Marino, A. M. and J. N. Luthin, “Developments in Water Science: Seepage and Groundwater,” Elsevier, Netherlands, p.489 (1982).
[27] Man, P. F., C. H. Mastrangelo, M. A Burns, and D.T.Burke, “Microfabricated capillary-driven stop valve and sample injector,” 11th Annual International Workshop on Micro ElectroMechanical Systems, Heidelberg, Germany, pp.25-29 (1998).
[28] Marei, S. M. and G. D. Tower, “A Hele-Shaw Analog Study of Seepage of Groundwater Resting on a Sloping Bed,” Water Resources Research, Vol.11, No.4, pp.589-594 (1975).
[29] Mein, R. G., and C. L. Larson, “Modeling infiltration during a steady rain,” Water Resources Research, Vol.9, No.2, pp.384-394(1973).
[30] Novak, V., Simunek, J., and van Genuchten, M. Th., “Infiltration of water into soil with cracks,” Journal of Irrigation and Drainage Engineering, Vol. 126, pp. 41-47 (2000).
[31] Nicholl, M. J, and Glass, R. J., “Infiltration into an Analog Fracture: Experimental observation of gravity-driven fingering,” Vadose Zone Journal, Vol.4, pp. 1123-1151 (2005).
[32] Parlange, J.-Y. and W. Brutsaert, “A Capillarity Correction for Free Surface Flow of Groundwater,” Water Resources Research, Vol.23, No.5, pp.805-808 (1987).
[33] Philip, J. R., “Approximate analysis of the borehole permeameter in unsaturated soil,” Water Resources Research, Vol. 21, No. 7, pp. 1025-1033 (1985).
[34] Philip, J. R., “Hillslope infiltration: Planar slopes,” Water Resources Research, Vol.27, No. 1, pp.109-117 (1991).
[35] Rawls, W. J., D. L. Brakensiek, and N. Miller, “Green and Ampt infiltration parameters from soils data,” Journal of Hydraulic Engineering, Vol.109, No.1, pp. 62-70(1983).
[36] Stephens, D. B., and Neuman, S. P., “Vadose zone permeability test: unsaturated Flow,” Journal of Hydraulics Division, Vol. 108, No. HY5, pp. 660-677 (1982).
[37] Steward, D. R., “Groundwater Response to Recharging Water-use Practices in Sloping Aquifers,” Water Resources Research, Vol.43, W05408, pp.1-11 (2007).
[38] Schmitz, G. H., “Transient infiltration from cavities: I. Theory,” Journal of Irrigation and Drainage Engineering, Vol.119, No.3, pp. 443-457 (1993).
[39] Schmitz, G. H., “Transient infiltration from cavities: II. Analysis and application,” Journal of Irrigation and Drainage Engineering, Vol.119, No.3, pp. 458-470 (1993).
[40] Strack, O. D. L., Groundwater Mechanics, Prentice Hall, New Jersey, pp. 631-632 (1989).
[41] Toksoz, S., Kirkham, D., and Baumann, E. R., “Two-dimensional infiltration and wetting fronts,” Journal of the Irrigation and Drainage Division, ASCE, Vol. 91, No. IR3, pp. 66-79 (1965).
[42] Wooding, R. A. and T. G. Chapman, “Groundwater Flow over a Sloping Impermeable Layer: 1. Application of the Dupuit-Forchheimer Assumption,” Journal of Geophysical Research, Vol.71, No.12, pp.2895-2902 (1966).
[43] Wöhling, Th, Schmitz, G. H., and Mailhol, J.-C., “Modeling two-dimensional infiltration from irrigation furrows,” Journal of Irrigation and Drainage Engineering, Vol.130, No.4, pp. 296-303 (2004).
[44] Waechter, R. T., and Philip, J. R., “Steady two and three dimensional flows in unsaturated soil: the scattering analog,” Water Resources Research, Vol.21, No. 12, pp. 1875-1887 (1985).
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2008-11-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明