博碩士論文 92343001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.22.240.53
姓名 任天熹(Tain-shi Zen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液滴撞擊移動表面之研究
(Investigation of Liquid Droplet Impacting on a Moving Surface)
相關論文
★ 化學機械研磨流場模擬實驗研究★ 變轉速之旋轉塗佈實驗研究
★ 微小熱點之主動式冷卻★ 大尺寸晶圓厚膜塗佈
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 科氏力與預塗薄膜對旋轉塗佈之影響
★ 微液滴對微熱點之 冷 卻★ 大尺寸晶圓之化學機械研磨實驗研究
★ 液晶顯示器旋轉塗佈研究★ 流體黏度對旋塗減量之影響
★ 微熱點與微溫度感測器製作★ 高溫蓄熱器理論模擬
★ 熱氣泡式噴墨塗佈★ 注液模式對旋轉塗佈之影響
★ 磁流體旋塗不穩定之研究★ TFT-LCD狹縫式塗佈研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是研究液滴撞擊移動乾表面之撞擊結果。在撞擊初期,液滴底部的液體將附著於移動表面並隨之運動,而液滴的其餘部份則是受到墜落慣性力的控制,停留在撞擊點上方並向四周擴展。實驗中使用高表面張力之液滴—水,而撞擊目標為表面光滑的旋轉矽晶圓。比較水滴撞擊移動面與靜止面之結果,兩者間最顯著的不同為:一是水滴附著在移動面上,使得液膜擴張的形狀被拉長成為不對稱,若移動面的速度愈大,液滴擴張的面積也愈大;反之,水滴撞擊靜止面會獲得對稱的液膜擴張。二是水滴撞擊高速運動之光滑面會發生飛濺(或分離)現象,原因是移動面速度到達一臨界值,水滴的表面張力被克服,使得液體發生分裂而造成飛濺(或分離)現象,移動面速度愈快,分離出去的液體量也愈多,此一狀況在水滴撞擊靜止且光滑之乾表面是不會發生的。
當實驗材料改用低表面張力之液滴—酒精,撞擊光滑的移動面—矽晶圓,且表面有一傾斜角度。研究中改變表面傾斜角度與速度,觀察撞擊結果的變化。當酒精滴撞擊靜止之傾斜面,酒精液膜流動受到重力的作用,向下方擴展的液膜較不穩定,易出現劇烈的飛濺現象,相對的朝上方擴展的液膜則較為穩定。當液滴撞擊移動面時,飛濺易發生在表面移動的反方向。將上述兩個特性結合,使傾斜面向下方移動,將使得原本應該發生之飛濺轉變為附著,也就是使液滴的附著區間增大,傾斜角度愈大則此一現象愈明顯。
摘要(英) This thesis investigates the outcomes of drop impacting onto the moving dry surface. In the early stage of impacting, the bottom of the liquid drop adheres to the surface and is dragged by the moving surface simultaneously. The remainder of the drop governed by the force of inertia will remain and expand above the impacting point. Water drops with the characteristics of high surface tension and a smooth surface of rotating wafer are adopted in the experiment. Two major different outcomes are significantly appeared between the stationary and moving surfaces after impacting. Firstly, the deposited film is elongated by a moving surface to form an asymmetrical geometry, and the area of deposited film enlarges when the surface velocity increases. Secondly, either detachment or splashing which is impossible to be occurred in a smooth and stationary surface appears in high surface velocity. When the surface velocity or impingement angle reaches critical value, the upper portion of the droplet can be overcome the surface tension to result in droplet floating on the air, and then the detachment or splashing is formed. The faster surface velocity can reach the larger amount of detaching liquid is obtained.
The ethanol drops have the advantage of low surface tension. The impact outcome of an ethanol drop on a moving inclined surface is also investigated in the experiment. The outcome transformations can be observed by varying the surface inclined angles and the moving velocities. The gravity not only can promote the instability of the expanding film at downward flow also can stabilize the film at upward flow during the drop impact onto a stationary inclined surface. Considering the horizontal moving surface, the surface velocity excites the occurrence of splashing that is toward the opposite direction of surface movement, whereas it suppresses the splashing in the same direction of surface movement. When the inclined surface moves downward at a proper surface velocity, the impact outcomes can be changed from downward splashing to deposition. In other words, the regime of deposition is enlarged by an appropriate surface velocity, and this tendency is more obvious with a larger inclined angle.
關鍵字(中) ★ 飛濺
★ 液滴撞擊
★ 附著
關鍵字(英) ★ drop impact
★ splashing
★ deposition
論文目次 1. 前言1
2. 文獻回顧4
2.1 液滴撞擊乾表面4
2.2 液滴撞擊常見研究方向12
2.3 液滴非正向撞擊19
3. 實驗設備及方法24
3.1 實驗設備24
3.2 實驗材料26
3.3 實驗量測方法28
3.4 常用無因次參數31
4. 結果與討論33
4.1 水滴撞擊靜止表面33
4.2 水滴撞擊移動表面37
4.3 酒精滴撞擊移動傾斜表面60
5. 結論74
6. 參考文獻76
參考文獻 Allen, R.F., 1975, The role of surface tension in splashing, J. Colloid Interface Sci., 51(2), 350-351.
Asai, A., Shioya, M., Hirasawa, S., Okazaki, T., 1993, Impact of an Ink Drop on Paper, J. Imaging Sci. Technol., 37, 205-207.
Aziz, S.D., Chandra, S., 2000, Impact, recoil and splashing of molten metal droplets, Int. J. Heat Mass Transf., 43, 2841-2857.
Bai, C.X., Rusche, H., Gosman, A.D., 2002, Modeling of gasoline spray impingement, Atom. Sprays, 12, 1-28.
Bassette, C., Bussière, F., 2008, Partitioning of splash and storage during raindrop impacts on banana leaves, Agric. For. Meteorol., 148(6-7), 991-1004.
Bergeron, V., Bonn, D., Martin, J.Y., Vovelle, L., 2000, Controlling Droplet Deposition with Polymer Additives, Nature, 405, 772-775.
Bird, J.C., Tsai, S.S.H., Stone, H.A., 2009, Inclined to splash: triggering and inhibiting a splash with tangential velocity, New J. Phys., 11, 063017(1-10).
Bhola, R., Chandra, S., 1999, Parameters controlling solidification of molten wax droplets falling on a solid surface, J. Mater. Sci., 34, 4883-4894.
Bussmann, M., Mostaghimi, J., Chandra, S., 1999, On a three-dimensional volume tracking model of droplet impact, Phys. Fluids, 11(6), 1406-1417.
Chandra, S., Avedisian, C.T., 1991, On the collision of a droplet with a solid surface, Proc. R. Soc. Lond. Ser. A, 432(1884),13-41.
Chang Y.W., Ukiwe, C., Kwok, D.Y., 2005, Chain length effect of alkanethiol self-assembled monolayers on the maximum spreading ratio of impacting water droplets, Colloid Surf. A-Physicochem. Eng. Asp., 260, 255-263.
Chen, R.H., Wang, H.W., 2005, Effects of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface, Exp. Fluids, 39, 754-760.
Chen, R.H., Chiu, S.L., Lin, T.H., 2007, On the collision behaviors of a diesel drop impinging on a hot surface, Exp. Therm. Fluid Sci., 32, 587-595.
Clanet, C., Béguin, C., Richard, D., Quéré D., 2004, Maximal deformation of an impacting drop, J. Fluid Mech., 517, 199-208.
Cossali, G.E., Coghe, A., Marengo, M., 1997, The impact of a single drop on a wetted solid surface, Exps. Fluids, 22, 463-472.
Courbin, L., Bird, J.C., Stone, H.A., 2008, “Black hole” nucleation in a splash of milk, Phys. Fluids, 20, 091106.
Dong, H., Carr, W.W., Bucknall, D.G.., Morris J.F., 2007, Temporally -resolved inkjet drop impaction on surfaces, AICHE J., 53(10), 2606-2617.
Engel, O.G.., 1955, Waterdrop Collision with Solid Surface, J. Res. Natn. Bur. Stand., 54(5), 281-298.
Extrand C.W., Kumagai Y., 1997, An Experimental Study of Contact Angle Hysteresis, J. Colloid Interface Sci., 191, 378-383.
Fathi, S., Dickens, P., Fouchal F., 2010, Regimes of droplet train impact on a moving surface in an additive manufacturing process, J. Mater. Process. Technol., 210, 550–559.
Fujimoto, H., Shiotani, Y., Tong, A.Y., Hama, T., Takuda, H., 2007, Three -dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate, Int. J. Multiph. Flow, 33, 317-332.
Fukai, J., Tanaka, M., Miyatake, O., 1998, Maximum spreading of liquid droplets colliding with flat surfaces, J. Chem. Eng. Jpn., 31(3), 456-461.
Galvin, K.P., Cork, A., Wall, T.F., 1996, Droplet impaction with a substrate the critical condition for detachment, Colloid Surf. A-Physicochem. Eng. Asp., 113, 107-116.
Haller, K.K., Ventikos, Y., Poulikakos D., 2002, Computational study of high-speed liquid droplet impact, J. Appl. Phys., 92(5), 2821-2828
Hardalupas, Y., Taylor, A.M.K.P., Wilkins, J.H., 1999, Experimental investigation of sub-millimetre droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow, 20, 477-485.
Healy, W.M., Hartley, J.G., Abdel-Khalik, S.I., 2001, Surface wetting effects on the spreading of liquid droplets impacting a solid surface at low Weber numbers, Int. J. Heat Mass Transf., 44, 235-240.
Kalantari, D., Tropea, C., 2007, Spray impact onto flat and rigid walls: Empirical characterization and modeling, Int. J. Multiph. Flow, 33, 525-544.
Kang, B.S., Lee, S.H., 2000, On the dynamic behavior of a liquid droplet impacting upon an inclined surface, Exp. Fluids, 29, 380-387.
Karl, A., Frohn, A., 2000, Experimental investigation of interaction process between droplets and hot walls, Phys. Fluids, 12(4), 785-796.
Kim, H.Y., Chun, J.H., 2001, The recoiling of liquid droplets upon collision with solid surfaces, Phys. Fluids, 13(3), 643-659.
Lavergne G., Platet B., 2000, Droplet impingment on cold and wet wall, Proceedings of the 16th International Conference on Liquid Atom and Spray-Systems–ILASS-Europe 2000, paper VII.12.
Leneweit, G., Koehler, R., Roesner, K.G., Schaefer, G., 2005, Regimes of drop morphology in oblique impact on deep fluids, J. Fluid Mech. 543, 303–331.
Madejski, 1976, Solidification of droplets on a cold substrate, Int. J. Heat Mass Transf., 19, 1009-1013.
Mao T.M., Kuhn D.C.S., Tran H., 1997, Spread and rebound of liquid droplets upon impact on flat surfaces. AICHE J., 43(9), 2169-2179.
Marmanis, H., Thoroddsen, S.T., 1996, Scaling of the fingering pattern of an impacting drop. Phys. Fluids, 8(6), 1344-1346.
Mehdizadeh, N.Z., Chandra, S., Mostaghimi, J., 2004, Formation of fingers around the edges of a drop hitting a metal plate with high velocity, J. Fluid Mech., 510, 353-373.
Moita, A.S., Moreira, A.L.N., 2007, Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization, Int. J. Heat Fluid Flow, 28,735-752.
Moreira, A.L.N., Moita, A.S., Cossali, E., Marengo, M., Santini, M., 2007, Secondary atomization of water and isooctane drops impinging on tilted heated surfaces, Exp. Fluids, 43, 297-313.
Mundo, C., Sommerfeld, M., Tropea, C., 1995, Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow, 21(2), 151-173.
Mundo, C., Sommerfeld, M., Tropea, C., 1998, On the modeling of liquid sprays impinging on surfaces, Atom. Sprays, 8, 625-652.
Okawa, T., Shiraishi, T., Mori, T., 2008, Effect of impingement angle on the outcome of single water drop impact onto a plane water surface, Exp. Fluids, 44, 331-339.
Panão, M.R.O., Moreira, A.L.N., 2004, Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray, Exp. Fluids, 37, 834-855.
Park, H., Carr, W.W., Zhu, J., Morris, J.E., 2003, Single drop impaction on a solid surface, AICHE J., 49(10), 2461-2471.
Pasandideh-Fard, M., Bhola, R., Chandra, S., Mostaghimi, J., 1998, Deposition of tin droplets on a steel plate: simulations and experiments, Int. J. Heat Mass Transf., 41, 2929-2945.
Pasandideh-Fard, M., Qiao, Y.M., Chandra, S., Mostaghimi, J., 1996, Capillary effects during droplet impact on a solid surface, Phys. Fluids, 8(3), 650-659.
Pepper, R.E., Courbin, L., Stone, H.A., 2008, Splashing on elastic membranes: The importance of early-time dynamics, Phys. Fluids, 20, 082103(1-8).
Povarov, O.A., Shalnev, K.K., Nazarov, O.I., Shalobasov, I.A., 1976, Collision of droplets with a moving plane surface, Sov. Phys. Dokl., 20(11), 782-783.
Range, K., Feuillebois, F., 1998, Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci., 203, 16-30.
Rein, M., 1993, Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res., 12, 61-93.
Rein M., Delplanque J. P., 2008, The role of air entrainment on the outcome of drop impact on a solid surface, Acta Mech., 201, 105-118.
Rieber, M., Frohn, A., 1999, A numerical study on the mechanism of splashing, Int. J. Heat Fluid Flow, 20, 455-461.
Rioboo, R., Marengo, M., Tropea, C., 2002, Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids, 33, 112-124.
Rioboo, R., Tropea, C., Marengo, M., 2001, Outcomes from a drop impact on solid surfaces, Atom. Sprays, 11, 155-165.
Roisman, I.V., Horvat, A.K, Tropea, C., 2006, Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray, Phys. Fluids, 18, 102104(1-19).
Roisman, I.V., Rioboo, R., Tropea, C., 2002, Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. Lond. Ser. A, 458, 1411-1430.
Roux D.C.D., Cooper-White J.J., 2004, Dynamics of water spreading on a glass surface, J. Colloid Interface Sci., 277, 424-436.
Scheller, B.L., Bousfield, D.W., 1995, Newtonian drop impact with a solid surface, AICHE J., 41(6), 1357-1367.
Schiaffino S., Sonin A.A., 1997, Molten droplet deposition and solidification at low Weber numbers, Phys. Fluids, 9(11), 3172-3187.
Schlichting H., Gersten K., 1979, Boundary-Layer Theory 7th, New York: McGraw-Hill, 26-27.
Šikalo, Š., Marengo, M., Tropea, C., Ganić, E.N., 2002, Analysis of impact of droplets on horizontal surfaces, Exp. Therm. Fluid Sci., 25, 503-510.
Šikalo, Š., Tropea, C., Ganić, E.N., 2005, Impact of Droplets onto inclined surfaces, J. Colloid Interface Sci., 286, 661-669.
Šikalo, Š., Ganić, E.N., 2006, Phenomena of droplet–surface interactions, Exp. Therm. Fluid Sci., 31, 97-110.
Sobolev, V.V., Guilemany, J.M., 1998, Influence of droplet impact angle on droplet-substrate mechanical interaction in thermal spraying, Mater. Lett., 33, 315-319.
Stow, C.D., Hadfield, M.G., 1981, An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. Ser. A, 373, 419-441.
Sumner, J.M., Blake, S., Matela, R.J., Wolff, J.A., 2005, Spatter, J. Volcanol. Geotherm. Res., 142, 49-65.
Thoroddsen, S. T., 2002, The ejecta sheet generated by the impact of a drop, J. Fluid Mech., 451, 373-381.
Thoroddsen, S.T., Sakakibara, J., 1998, Evolution of the fingering pattern of an impacting drop, Phys. Fluids, 10(6), 1359-1374.
Vander Wal, R.L., Berger, G.M., Mozes, S.D., 2006, The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them, Exp. Fluids, 40, 23-32.
Wang, A.B., Lin, C.H., Chen, C.C., 2000, The critical temperature of dry impact for tiny droplet impinging on a heated surface, Phys. Fluids, 12(6), 1622-1625.
Wu, L., Bogy, D.B., 2001, A generalized compressible Reynolds lubrication equation with bounded contact pressure, Phys. Fluids, 13(8), 2237-2244
Wu, X., Squires, K. D., 2000, Prediction and investigation of the turbulent flow over a rotating disk, J. Fluid Mech., 418, 231-264.
Xu, L., Zahang, W.W., Nagel, S.R., 2005, Drop splashing onto a dry smooth surface, Phys. Rev. Lett., 94, 184505(1-4).
Xu, L., 2007, Liquid drop splashing on smooth, rough and textured surfaces, Phys. Rev. E 75, 056316(1-8).
Yang, C., Leong, K.C., 2002, Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces, Exp. Fluids 33, 728-731.
Yarin, A.L., 2006, Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing . . ., Annu. Rev. Fluid. Mech., 38, 159-192.
Yao, S.C., Cai, K.Y., 1988, The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles, Exp. Therm. Fluid Sci., 1, 363-371.
Zhang, X., Basaran, O.A., 1997, Dynamic surface tension effects in impact of a drop with a solid surface, J. Colloid Interface Sci., 187, 166-178.
李克威,2006,液滴撞擊旋轉表面研究,國立中央大學機械工程碩士論文
指導教授 周復初、洪勵吾
(Fu-chu Chou、Lih-wu Hourng)
審核日期 2010-5-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明