博碩士論文 92343010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.142.248
姓名 黃信文(Hsin-wen Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究
(Evolution of dispersoid and behavior of recrystallization on Al-Mn alloys during producing process of automobile heat exchanger)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 磁場輔助微電化學銑削加工特性之研究★ 磁場輔助微電化學鑽孔加工特性之研究
★ 微結構電化學加工底部R角之改善策略分析與實做研究★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響
★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響
★ 添加石墨粉末之快速穿孔放電加工特性研究★ 派熱司玻璃材料之電化學線切割放電加工特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要是對汽車熱交換器用之3003鋁合金,在工業製造上所遭遇的問題,進行系統性的研究與分析。為了提升汽車用鰭管式熱交換器的散熱效率,其多穴tube之截面設計非常複雜,故常使用成形性極為優良的3000系鋁合金,進行多穴tube之擠製成形。而3000系鋁合金在擠製前之均質化處理,會產生分散相粒子的析出。利用均質化條件之設計,控制分散相粒子的析出結果及材料的固溶狀況,便可以掌握擠製成形的加工性及成品特性。因此,首先研究3003鋁合金分散相粒子於不同均質化條件下之析出演化行為。本研究設計出八種不同的均質化條件,以觀察3003鋁合金之分散相粒子,在析出演化時之過程與結果,及其對擠製成形性的影響。在均質化處理過程中,分散相的析出演化,取決於核生成、核成長、Ostwald ripening mechanism及異質析出的進行。均質化處理初期,分散相粒子開始成核,然後經過成長階段,在Ostwald ripening mechanism之回溶及粗化的過程後,完成了最後的析出狀態。其中,在較低的均質化溫度中(400℃, 460℃),傾向於析出較不穩定的灰色Al6(Mn,Fe)粒子,在較高的均質化溫度中(600℃),則傾向於析出較穩定的黑色α- Al12(Mn,Fe)3Si粒子。而在600℃x9h?460℃x3h這種最後溫度低於先前溫度的階段式均質化條件中,容易經由異質析出的行為,產生雙色共存的析出粒子。
擠製成形時所產生的再結晶舉動,是決定加工成品機械特性的關鍵。承續上述研究,挑選出均質化處理後,固溶及析出狀態差異性較大的四組條件,進行均質化條件對3003鋁合金擠製成形時再結晶舉動之影響研究。鑄錠經由四種不同的均質化處理後,進行擠製成形,以調查不同的固溶量及析出狀態對擠製再結晶舉動的影響。OM、SEM的微結構觀察、導電度量測、擠製突破壓力擷取以及硬度分析為本實驗的研究方法。結果顯示,低溫均質化傾向於析出細密的分散相粒子,這些粒子會產生強烈的差排釘阻效應,使得差排不易移動,擠製再結晶亦較困難;高溫均質化則傾向於析出粗疏的分散相粒子,差排釘阻效應較薄弱,而擠製再結晶則較容易。然而,在本研究中最高的均質化溫度630℃處理後,幾乎沒有分散相粒子的析出,擠製再結晶卻較600℃均質化處理來得困難。推測是因為其超大量的固溶原子,亦會對差排的移動造成限制,而產生這個現象。另外,雖然階段式均質化條件600℃x9h?460℃x3h的固溶量,比600℃x9h均質化條件低很多,但在析出分散相粒子的數量及分布相近的情況下,再結晶的狀態亦幾乎完全相同。最後,將不同的固溶量和析出狀態,對於擠製再結晶行為之影響,區分為被拉長的再結晶粒,以及等軸的再結晶粒兩種形成模式。
汽車用鰭管式熱交換器,在其多穴tube擠製成形之後,必須要與鰭片硬銲接合,才能製成熱交換器。而硬銲接合通常是在600℃x10min的環境下進行。在如此高的溫度下,擠製再結晶極有可能產生變化,而影響材料的機械特性。所以,本研究選出了加工成形性較佳的四組均質化條件,以進行汽車熱交換器用3003鋁合金擠製成形性及硬銲特性之研究。首先,施以不同均質化處理,可發現460℃x9h低溫均質化處理會析出緻密的分散相粒子;而有經過600℃x9h過程的均質化處理,分散相粒子皆較為稀疏。接著,進行擠製成形,可發現當析出粒子較為粗大稀疏時,擠製突破壓力由固溶程度所主導,且再結晶較容易;析出粒子細小緻密到一個程度時,固溶度的主導地位將被其所取代,再結晶較困難。而擠製後硬度,以完成再結晶的部分硬度較低,未完成再結晶的部位硬度較高。最後,進行硬銲處理模擬,發現460℃x9h的條件會從部份再結晶轉變為完全再結晶,強度降低;600℃x9h→460℃x3h的條件發生二次再結晶的局部區域,硬度大幅下降。
摘要(英) The 3003 aluminum alloy which contains Mn, Fe and Si as alloying elements is widely used in the container, packaging, and automobile industry, because of its excellent specific strength, corrosion resistance and formability. During solidification, most of the Mn atoms can be solid-dissolved in the aluminum matrix, which results in a supersaturated solid solution. This supersaturated solid solution decomposes via the precipitation of dispersed particles during the homogenization treatment prior to hot rolling or extrusion. Therefore, controlling the size, density and distribution of the precipitated particles, as well as quantity of Mn atoms in the solid solution during homogenization are very important. First, we study evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy. The evolution of the precipitation of second phase particles dispersed in a DC cast 3003 aluminum alloy during different homogenization treatments was investigated. Eight kinds of homogenization conditions were designed. We conclude that the evolution of precipitated dispersed particles during homogenization is controlled by nucleation, growth, Ostwald ripening process and hetero-precipitation. Nucleation of the particles would occur first during the initial phase of homogenization. They would then undergo a process of growth, dissolution and coarsening, before reaching the final state of precipitation. Two-color particles usually appear at step-homogenization, which has a lower later temperature, 600℃x9h?460℃x3h, due to a hetero-precipitation behavior.
The mechanical properties of extrusion products are mainly determined by the final result of the extrusion recrystallization. Following the priority study, we used the four conditions which had the largest difference between the precipitation and the solution quantity in the eight designed conditions to study evolutionary behavior of recrystallization during the extrusion of Al-Mn alloys. The different solution quantities and precipitation states in a homogenized Al-Mn alloy, and the effects of these on recrystallization behavior during extrusion were investigated. Homogenization at a low temperature of 460℃ resulted in a plentiful precipitation, which acted to pin down dislocations, thus making the recrystallization more difficult. At a higher homogenization temperature of 600℃, the particles were more sparsely dispersed, causing a weaker obstruction effect and making recrystallization easier. There were almost no dispersed precipitates at the highest homogenization temperature of 630℃, but dislocations were held up by abundant solution atoms, causing weaker recrystallization than that at 600℃. Although the solution quantity was much less under step-homogenization (600℃x9h?460℃x3h) than that under the 600℃x9h condition, the recrystallization situation was very similar. Finally, the recrystallization could be distinguished as elongated grains or equi-axial grains.
The tubes of the automobile fin-tube heat exchangers are usually produced by extruding 3003 aluminum alloys, and are then combined with fins via brazing bonds at 600℃ for 10 minutes. In this high temperature, the extrusion recrystallization will change, and affect the final mechanical properties of the products. Therefore, the study of extrusion forming ability and brazing properties in 3003 aluminum alloys is very significant. We used the four conditions which had the better forming ability in the priority eight designed conditions to do this investigation. The effects of precipitation in homogenization treatments, recrystallization in extrusion and brazing on extrusion forming ability and final material properties are examined. At first, fine dispersoids were precipitated during the 460℃x9h homogenization treatment and coarse dispersoids were precipitated by homogenization treatments with 600℃x9h. Second, when the dispersoids were not plentiful and fine enough during extrusion, the amount of solution dominated the extrusion breakout pressure, and recrystallization was easier; on the contrary, the domination state was replaced by plentiful and fine dispersoids, and recrystallization became more difficult. Additionally, the hardness after extrusion was lower in the complete recrystallization position, and higher in the incomplete recrystallization position. Finally, in brazing, the sample under the 460℃x9h condition underwent full recrystallization with a reduction in strength; the local position of the edge of the sample under the 600℃x9h?460℃x3h condition exhibited a second recrystallization and a significant drop in hardness.
關鍵字(中) ★ 均質化處理
★ 分散相析出粒子
★ 固溶度
★ 二次再結晶
★ 擠製成形
★ 再結晶
★ 硬銲處理
關鍵字(英) ★ Extrusion
★ Solid solution
★ Precipitation
★ Dispersoid
★ Homogenization treatment
★ Recrystallization
★ Brazing
★ Second recrystallization
論文目次 目 錄
摘要…………………………………………………………………… I
Abstract………………………………………………………………III
謝誌………………………………………………………………………V
目錄…………………………………………………………………… VI
表目錄………………………………………………………………… IX
圖目錄……………………………………………………………………X
第一章 緒論…………………………………………………………… 1
1.1 研究背景………………………………………………………… 1
1.2 研究目的………………………………………………………… 9
1.3 研究方向………………………………………………………… 14
第二章 理論基礎與文獻回顧…………………………………………16
2.1 Al-Mn合金的鑄造……………………………………………… 16
2.2 Al-Mn合金的均質化處理……………………………………… 17
2.2.1 均質化處理對晶出相之影響………………………………… 17
2.2.2 均質化處理對分散相之影響………………………………… 17
2.2.3 固溶量之導電率分析法……………………………………… 18
2.3 擠型塑性加工法………………………………………………… 19
2.3.1 擠製成形之種類及完整流程………………………………… 19
2.3.2 擠製過程中組織結構之變化………………………………… 21
2.4 擠型性之評估…………………………………………………… 21
2.4.1 流變應力(Flow stress)………………………………………22
2.4.2 擠製壓力……………………………………………………… 23
2.4.3 擠製速度……………………………………………………… 23
2.5 擠製條件對擠型性之影響……………………………………… 24
2.5.1 合金組成……………………………………………………… 24
2.5.2 擠製溫度……………………………………………………… 24
2.5.3 模具設計……………………………………………………… 24
2.6 加工組織之回復與再結晶……………………………………… 25
2.6.1 回復與再結晶………………………………………………… 25
2.6.2 影響再結晶晶粒大小之因素………………………………… 27
2.7 二次再結晶(Secondary recrystallization)………………27
2.7.1 二次再結晶機制……………………………………………… 27
2.7.2 二次再結晶之影響因素……………………………………… 28
2.8 分散相粒子……………………………………………………… 29
2.8.1 分散相粒子對再結晶的影響………………………………… 29
2.8.2 再結晶對分散相粒子整合性的影響………………………… 30
2.8.3 分散相粒子之散佈強化機構………………………………… 31
2.8.4 影響分散相粒子分佈之因素………………………………… 31
第三章 實驗步驟與方法………………………………………………51
3.1 實驗步驟及設計………………………………………………… 51
3.1.1 3003鋁合金分散相粒子於不同均質化條件下之析出演化行為
………………………………………………………………………… 51
3.1.2 均質化條件對3003鋁合金擠製成形時再結晶舉動之影響研究
………………………………………………………………………… 52
3.1.3 汽車熱交換器用3003鋁合金擠製成形性及硬焊特性之研究
………………………………………………………………………… 53
3.2 實驗設備及方法………………………………………………… 54
3.2.1 均質化處理…………………………………………………… 54
3.2.2 擠製成形……………………………………………………… 55
3.2.3 硬銲處理模擬………………………………………………… 56
3.2.4 光學顯微鏡觀察……………………………………………… 56
3.2.5 導電率測試…………………………………………………… 56
3.2.6 硬度量測……………………………………………………… 57
3.2.7 拉伸試驗……………………………………………………… 57
3.2.8 穿透式電子顯微鏡觀察……………………………………… 58
第四章 3003鋁合金分散相粒子於不同均質化條件下之析出演化行為
………………………………………………………………………… 66
4.1 前言……………………………………………………………… 66
4.2 結果與討論……………………………………………………… 67
4.2.1 八種均質化處理後之分散相粒子析出狀態………………… 67
4.2.2 分散相粒子在均質化過程中之演化………………………… 69
4.2.3 擠製成形性及分散相粒子演化行為之分析………………… 71
4.3 結論……………………………………………………………… 73
第五章 均質化條件對3003鋁合金擠製成形時再結晶舉動之影響研究
………………………………………………………………………… 85
5.1 前言……………………………………………………………… 85
5.2 結果與討論……………………………………………………… 86
5.2.1 均質化處理後之固溶量及析出狀態………………………… 86
5.2.2 固溶量及析出狀態對擠製再結晶之影響…………………… 87
5.2.3 材料機械特性以及擠製再結晶演化行為之分析…………… 91
5.3 結論……………………………………………………………… 92
第六章 汽車熱交換器用3003鋁合金擠製成形性及硬焊特性之研究
…………………………………………………………………………104
6.1 前言…………………………………………………………… 104
6.2 結果與討論…………………………………………………… 105
6.2.1 均質化處理對於固溶量及析出狀態之影響……………… 105
6.2.2 固溶量及析出狀態對擠製成形及硬焊特性之影響……… 106
6.2.3 擠製成形至硬焊處理之材料機械特性及再結晶變……… 110
6.3 結論…………………………………………………………… 112
第七章 總結論……………………………………………………… 123
7-1 總結論……………………………………………………………123
7-2 未來展望…………………………………………………………125
參考文獻…………………………………………………………… 126
作者簡介…………………………………………………………… 131
表 目 錄
表2-1 不同合金之擠型性比較……………………………………… 36
表3-1 3003鋁合金之合金元素成分(wt%)………………………… 59
表3-2 3003鋁合金擠製成形之條件列表……………………………59
表4-1 研究一全製程中之導電率變化……………………………… 75
表5-1 研究二全製程中之導電率變化……………………………… 94
表6-1 研究三全製程中之導電率變化………………………………113
圖 目 錄
圖1-1 燃料使用效率對汽車重量關係圖………………………………5
圖1-2 各種材料之輕量化效果…………………………………………6
圖1-3 日本、北美、歐洲鋁合金在汽車使用量上之調查……………7
圖1-4 本田汽車公司NSX轎車的材料構成比…………………………8
圖1-5 汽車用鰭管式熱交換器……………………………………… 11
圖1-6 鰭管式熱交換器之多穴tube設計……………………………12
圖1-7 多穴tube擠製的製程及其問題………………………………13
圖2-1 Al-Mn合金部分相圖………………………………………… 37
圖2-2 不同擠製過程與方法………………………………………… 38
圖2-3 擠製流程圖…………………………………………………… 39
圖2-4 經部分擠出之擠錠變形組織圖……………………………… 40
圖2-5 擠錠受擠桿推壓變形至突破模具開始擠出示意圖………… 40
圖2-6 不同溫度下應變率對流變應力之影響:
(a)為AA1050;(b)為AA3102合金…………………………41
圖2-7 最大擠製速度界限圖………………………………………… 42
圖2-8 擠型性評估測試之模具設計………………………………… 43
圖2-9 不同截面形狀模具之擠型比及擠製溫度對於最大
擠製壓力之影響…………………………………………… 44
圖2-10 模具承受面(Bearing)長度對(a)溫度、擠製壓力,
及對(b)擠製速度之影響…………………………………… 45
圖2-11 再結晶後分散相粒子整合性改變之模式圖…………………46
圖2-12 晶界通過整合分散相粒子之回溶及再析出模式圖…………47
圖2-13 差排切過析出相質點之模式圖(表面硬化)…………………48
圖2-14 差排切過析出相質點時造成差排彎曲之模式圖(表面硬化)
………………………………………………………………………… 48
圖2-15 差排通過析出相之模式圖(化學硬化)………………………49
圖2-16 差排通過析出相質點之Orowan機構模式圖……………… 49
圖2-17 析出粒子之粗化機構(Coarsening)…………………………50
圖3-1 研究一之實驗流程圖………………………………………… 60
圖3-2 研究二之實驗流程圖………………………………………… 61
圖3-3 研究三之實驗流程圖………………………………………… 62
圖3-4 擠製途中之金相組織觀察部位……………………………… 63
圖3-5 擠製過程之擠製壓力變化曲線及擠製突破壓力…………… 64
圖3-6 渦電流檢驗法………………………………………………… 65
圖3-7 拉伸試棒之規格……………………………………………… 65
圖4-1 各種均質化處理後,分散相粒子之光學顯微鏡觀察
(a)400℃x18h; (b)460℃x9h;
(c)600℃x9h; (d)630℃x9h………………………………… 76
圖4-2 各種均質化處理後,析出分散相粒子之TEM觀察
(A)400℃x18h; (B)460℃x9h; (C)600℃x9h;
(D)630℃x9h; (E)600℃x9h?460x3h;
(F)460℃x1h?600x9h; (G)400℃x18h?600℃x3h;
(H)400℃x18h?460℃x3h?600℃x3h………………………77
圖4-3 不同顏色分散相粒子之EDS分析
(a)灰色粒子;(b)黑色粒子………………………………78
圖4-4 均質化條件condition(G)及condition(H)處理中,分散相粒
子析出演化行為之TEM觀察………………………………… 79
圖4-5 均質化條件condition(B)及condition(F)處理中,分散相粒
子析出演化行為之TEM觀察………………………………… 80
圖4-6 均質化條件condition(C)及condition(E)處理中,分散相粒
子析出演化行為之TEM觀察。其中,圓形線條框住的部分指
出了雙色共存粒子……………………………………………81
圖4-7 各種均質化處理後,以擠製突破壓力所表示之材料成形性的比較……………………………………………………………82
圖4-8 在單一溫度均質化處理中,分散相粒子析出演化之模擬示意
圖………………………………………………………………83
圖4-9 在階段式均質化處理中,分散相粒子析出演化之模擬示意
圖………………………………………………………………84
圖5-1 均質化處理後,分散相粒子之OM光學顯微鏡觀察:
(a)460℃x9h; (b)600℃x9h; (c)630℃x9h……………… 95
圖5-2 均質化處理後,析出分散相粒子之TEM觀察:
(a)460℃x9h; (b)600℃x9h;
(c)600℃x9h?460℃x3h; (d)630℃x9h…………………… 96
圖5-3 600℃×9h均質化處理後,擠製成形時之再結晶演化行為:
(a)已擠出區; (b)不流動區;
(c)-(e)剪應變區; (f)-(h)塑性變形區
圖中的“*”號,指出的是觀察部位…………………………97
圖5-4 均質化處理後,已擠出區的擠製再結晶之OM觀察,觀察方向
平行於擠出方向:
(a)460℃x9h; (b)600℃x9h; (c)630℃x9h……………… 98
圖5-5 均質化處理後,已擠出區的擠製再結晶之OM觀察,觀察方向
垂直於擠出方向:
(a)460℃x9h; (b)600℃x9h; (c)630℃x9h……………… 99
圖5-6 在通過模具擠出口之前,擠出口附近之剪應變區(a)、(b)及
塑性變形區(c)、(d),微結構組織之TEM觀察。其中,圖(a)、
(c)是condition(II-A) (460℃×9h)之圖;圖(b)、(d)是
condition(II-B) (600℃×9h)之圖……………………… 100
圖5-7 均質化處理後,擠製成形的已擠出區之TEM觀察:
(a)460℃x9h; (b)600℃x9h; (c)630℃x9h;
(d)600℃x9h?460℃x3h……………………………………101
圖5-8 經四種均質化處理的鑄錠,擠製成形後所得之圓桿試片,從
外圍到中心的硬度變化曲線圖…………………………… 102
圖5-9 本研究中所觀察到的擠製再結晶,其演化舉動之模擬分析示
意圖:
(a)被拉長的粗疏再結晶;(b)等軸的細密再結晶…………103
圖6-1 均質化處理後,分散相粒子之OM觀察:
(a)460℃x9h; (b)600℃x9h; (c)600℃x9h?460℃x3h;
(d)460℃x1h?600℃x9h……………………………………114
圖6-2 均質化處理後,分散相粒子之TEM觀察:
(a)460℃x9h; (b)600℃x9h;
(c)600℃x9h?460℃x3h;
(d)460℃x1h?600℃x9h……………………………………115
圖6-3 不同均質化處理下,已擠出區的擠製再結晶之OM觀察,觀察
方向平行於擠出方向……………………………………… 116
圖6-4 均質化處理後,擠製中途停止,在接近擠出閘口而尚未擠出
的塑性變形區之TEM觀察:
(a)460℃x9h; (b)600℃x9h;
(c)600℃x9h?460℃x3h;
(d)460℃x1h?600℃x9h……………………………………117
圖6-5 均質化處理後,擠製成形的已擠出區之TEM觀察:
(a)460℃x9h; (b)600℃x9h;
(c)600℃x9h?460℃x3h;
(d)460℃x1h?600℃x9h……………………………………118
圖6-6 (a)四種試片在硬銲後,擠製再結晶之OM觀察
(b)Condition(III-C)在擠製後及硬銲後,試片外圍分散相粒子析出狀態之OM觀察……………………………………119
圖6-7 本研究中,在擠製後及硬銲後,擠製再結晶變化之模擬示意
圖…………………………………………………………… 120
圖6-8 (a) 擠製後,從試片外圍至中心之硬度變化曲線
(b) 硬銲後,從試片外圍至中心之硬度變化曲線………… 121
圖6-9 擠製後及硬銲後,拉伸強度及降伏強度之比較…………… 122
參考文獻 [1] T. Doko, S. Asami, K. Yagi: The Japan Institute of Light Metals 1988; 38: 393-386.
Effects of precipitate particles on structure evolution during hot rolling of 3003 aluminum alloy.
[2] S. Asami, T. Doko, K. Yagi: The Japan Institute of Light Metals 1989; 39: 100-94.
Recrystallization behavior during hot rolling of 3004 aluminum alloy.
[3] P. Furrer, G. Hausch: Metals Science 1979; 13: 162-155.
Recrystallization Behavior of Commercial Al--1% Mn Alloy.
[4] R.K. Bolingbroke, G.J. Marshall, R.A. Ricks: The 3rd International Conference on Aluminum Alloys 1992; pp290-285.
Microstructural development during preheating of AA3004.
[5] E. Nes: Acta Metallurgica 1976; 24: 398-391.
Effect of a fine particle dispersion on heterogeneous recrystallization.
[6] F.J. Humphreys: Acta Metall 1977; 25: 1344-1323.
Nucleation of recrystallization at second phase particles in deformed aluminium.
[7] G. Hausch, P. Furrer, H. Warlimont: Z Metallkd 1978; 69: 181-174.
Recrystallization and precipitation in Al-Mn-Si-alloys.
[8] Y. Kwag, J.G. Morris: Materials Science and Engineering 1986; 77: 74-59.
The effect of structure on the mechanical behavior and stretch formability of constitutionally dynamic 3000 series aluminum alloys.
[9] W.B. Hutchinson, A. Oscarsson, A. Karlsson: Materials Science Technology 1989; 5: 1127-1118.
Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands.
[10] Y.J. Li, L. Arnberg: Materials Science and Engineering A 2003; 347: 135-130.
Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization.
[11] Y.J. Li, L. Arnberg: Acta Materialia 2003; 51: 3428-3415.
Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization.
[12] P.C.M. de Haan, J. van Rijkom, J.A.H. Sontgerath: Materials Science Forum 1996; 765: 222-217.
[13] G. Lang, A.F. Castle et al.:“Extrusion” 1982, Scientific and Technical Development, Deutshe Gesellshaft fur Metallkunde.
[14] W.D. Finkelnburg, G. Scharf: ET’92 1992; 2, 475.
[15] T. Sheppard: Proceedings of Third International Aluminum
Extrusion Technology Seminar 1984; pp124-107.
[16] W. Libura: Proceedings of Fifth International Aluminum
Extrusion Technology Seminar 1992; 2, 494-485.
[17] T. Sheppard, A. Jackson: Proceedings of the Sixth International Aluminum Extrusion Technology Seminar 1996; 1, 228-223.
[18] K. Aschroft, G.S. Lawson: The Japan Institute of Metals 1961; 89, 369.
[19] E. Siebel: Chapman&Hall 1960; pp201.
[20] W. Misiolek: Light Metal Age 1988; pp22-18.
[21] L. Martin, R. Oddvin: Proceedings of the Sixth International Aluminum Extrusion Technology Seminar 1996; 1, 21-11.
[22] S. Okaniwa: The Japan Institute of Light Metals 1995; 45, 489-471.
[23] A.K. Vasudevan, R.D. Doherty: Aluminum Alloys Contemporary Research and Applications, Academic Press, Inc., San Diego 1989; pp170-35.
[24] M.P. Clode: Proceedings of Sixth International Aluminum Extrusion Technology Seminar 1992; 2, 79.
[25] T. Sheppard: Metal Technology 1981; pp130.
[26] R.D. Doherty: Metal Science 1982; 16, pp.13-1.
[27] H.M. Chan, F.J. Humphreys: Metal Science 1984; 18, 529-527.
[28] H.M. Chan, F.J. Humphreys: Acta Metallurgica 1984; 32, 243-235.
[29] R.E. Reed-Hill, R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company 1991, pp535-515.
[30] D. Williamand, Jr. Callister: Materials Science and Engineering, 3rd ed., New York, John Wiley & Sons, Inc 1994; pp162-92.
[31] D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys, London, Chapman & Hall 1993; pp47-44, pp75-71, pp317-314.
[32] N. Adler, R. Deiasi and G. Geschwind: Materials Transactions 1972; 3, 3200-3191.
[33] R.E. Reed-Hill, R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company 1991, pp46-461.
[34] J.E. Hatch: Aluminum-Properties and Physical Metallurgy, ASM, Metals Park, Ohio 1984; pp104-58, pp197-134.
[35] G. Itoh, H. Saitoh, B.L. Ou, H. Suzuki: The Japan Institute of Light Metals 1986, 36, 490-485.
[36] H. Watanabe, K. Ohori, Y. Takeuchi: The Japan Institute of Light Metals 1982; 33: 156-149.
Phase change in 3004 base alloys at elevated temperatures.
[37] A.L. Dons: Scandinavian Journal of Metallurgy 1984; 13: 148-137.
Variations in the composition of AlMnFeSi-particles in aluminum
[38] J. Sanders, D.J. Lege, T.L. Hartman: Aluminum 1989; 65: 950-941.
Aluminum Rigid Container for the Packaging Industry.
[39] R.G. Kamat: JOM 1996; 48: 45-34.
AA3014 can-body stock ingot:characterization and homogenization.
[40] Z. Li, J.G. Morris, S.X. Ding, C.X. Li: The 3rd International Conference on Aluminum Alloys 1992; 378-373.
Effect of homogenization on recrystallization behavior of AA 3004 aluminum.
[41] J. Kaneko, M. Sugamata, M. Takeshima: The Japan Institute of Light Metals 1985; 35: 20-12.
Effects of tempering on the formability of 3003 and 3004 aluminum sheets.
[42] T. Inaba, E. Usui, N. Shinano: The Japan Institute of Light Metals 1989; 39: 7-3.
Age-hardening behavior of Al-1%Mn-1%Mg alloy.
[43] T. Inaba, E. Usui: R-D Kobe Steel Engineering 1991; 41: 81-77.
Effects of heat treatment on Formability of 3004 alloy sheets.
[44] E. Nes, S.E. Naess, R.Z. Hoier: Z Metallkd 1972; 63: 256-248.
Decomposition of an Aluminum-Manganese Alloy.
[45] P. Furrer: Z Metallkd 1979; 70: 708-699.
Structural Changes in the Heat Treatment of Continuously Cast Al-Mn Ingots.
[46] F.S. Lameiras: Journal of Materials Research 1999; 2: 143-139.
Ostwald Ripening:An approach with dynamical system.
[47] F. Despa, M. Apostol: Journal of Theoretical Physics 1999; 40: 5-1.
On the Ostwald Ripening process.
[48] T. Minoda, H. Yoshida: Sumitomo Light Metal Technical Reports 1998; 39, 25-20.
[49] H.D. Merchant: Metals Society 1988; pp117.
指導教授 顏炳華(Biing-hwa Yan) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明