博碩士論文 92343020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:152 、訪客IP:3.145.156.46
姓名 柯俊宏(Jiuan-Hung Ke)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 彈性磨料開發及其應用於晶圓噴拋之實驗研究
(Development of Elasticity Abrasive and it Application to Experimental Study on the mainly of Wafer by Abrasive Jet Technology)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體產業因科技產品需求增加及石化危機所造成的太陽能產業蓬勃發展等大環境影響下,使得矽晶圓的使用量大增,在供需不平衡下衍生了原物料短缺之問題。因製程良率問題所造成的廢棄晶圓其價值亦水漲船高,在成本及資源再利用的相關考量下,產業對晶圓再利用的需求性與日俱增,故晶圓表面處理技術為目前急需突破的課題。而傳統的晶圓表面處理製程尚有環境性、加工性等若干問題急需解決。
本研究在環境影響、製程效率等因素考量下,選擇對於脆硬材料有較佳材料移除率的磨料噴射法為製程加工法,但因傳統磨料噴射撞擊容易因過度加工而造成表面不平整,徒增後續處理之困擾,本研究研發製備具微彈性的複合噴射磨料,利用其具有緩衝瞬間衝擊能量特性,針對磨料噴射加工法於晶圓表面異質層移除的缺點進行改善,並配合精微噴射技術,能有效改善加工過度、表面粗糙度的問題,進而降低後續製程處理成本。
研究主要分為三大部分,第一部份為複合磨料的製備及加工性探討:利用物理熱披覆的方式將加熱後之研磨磨粒均勻披覆於高分子材料球狀顆粒表面以製成新型複合磨料,實驗證明在設定溫度200℃及披覆粒徑#3000時可獲得形貌完整、披覆均勻的複合磨料,並藉由加工性測試中發現複合噴射磨料確實降低裂痕衍生的機率。第二部分則為晶圓回收處理製程:針對晶圓表面異質層處理利用實驗設計進行實驗規劃,探討各製程參數對表面粗糙度與材料移除率的影響。經實驗結果得知,較佳製程參數組合為:披覆磨料號數#3000SiC、衝擊角度30°、噴射距離70mm、噴射壓力0.4MPa及旋轉平台轉速250rpm。可於5分鐘內將晶圓表面異質層完全去除,經EDS檢測證實無其他元素殘留,且達到表面粗糙度0.118 μm Ra。由實驗證明本研究所開發的複合磨料可完全移除晶圓表面異質層且獲得較佳的表面粗糙度。第三部份則是研發磁彈性複合磨料再配合磁場輔助的牽曵吸引效果,增加磨料的材料移除效率,並提升磨料利用率,實驗結果證明利用化學共沉法製造的奈米磁性微粉能披覆在彈性複合磨料上形成磁彈性複合磨料,使其同時兼具多種材料移除機制。
摘要(英) As the semiconductor industry due to increased demand for technology products and petrochemical crisis caused by the solar industry is flourishing under the influence of such environment, making use of the silicon wafer significant increase in the supply and demand imbalance under the derivative of the original problem of material shortage. Due process yield problems caused by discarded wafers will also increase its value, in terms of cost and resource re-use of relevant considerations, industry demand for wafers of increasing re-use, so the wafer surface treatment technology is urgently needed to break the subject . The traditional wafer surface treatment processes are still the environment of the processing of a number of issues need to be resolved.
In this study, the environmental impact, process efficiency and other factors consideration, the select the for hard-brittle materials with better material removal rate of abrasive jet machining process method , but the traditional abrasive jet impact likely caused by over-processed surface is not smooth, merely to add subsequent treatment of the problems, this study developed a micro- elasticity compound abrasive, using its instant impact with the energy characteristics of the buffer, for abrasive jet machining method to remove the wafer surface hetero layer to improve the shortcomings, and with microscopic jet technology, can effectively improve the excessive processing and the surface roughness of the problem, thus reducing the cost of subsequent treatment processes.
Study is divided into three parts, the first part of the composite abrasive of the preparation and processing: the use of physical heating coated with way the abrasive particles coated on the surface of polymer materials made of spherical composite abrasive, experimental proof of the set temperature of 200 ℃ and the availability of coated particle morphology # 3000, complete uniform composite coated abrasives. The results indicate indeed found to reduce the cracks derivative. The second part is the wafer recycling process: the surface hetero layer for wafer processing using experimental of design to explore the process parameters on surface roughness and material removal rate. The experimental results revealed that the better combination of process parameters: combination is Abrasive mesh size 3000 SiC、Impact angle 30°、stand-off distance 70mm、Impact pressure 0.4 MPa and rotation platform speed 250 rpm. The wafer surface hetero layer is completely removed within 5 minutes and the EDS examination confirms that there are no other elements remained and the result also achieves the surface roughness 0.118μm Ra. The experiment proves that the compound abrasive can completely remove the hetero layer on wafer surface and obtain the better surface roughness. The third part is the development of magnetic elasticity composite abrasive with the magnetic field assisted and then attracting effect, increasing the abrasive material removal efficiency, and improve utilization of abrasive, experimental results show that the use of chemical co-precipitation method to manufacture nano-magnetic powder coated with composite abrasive to form the magnetic-elasticity composite abrasive. It also combines a variety of material removal mechanism.
關鍵字(中) ★ 複合磨料
★ 異質層移除
★ 磁彈性複合磨料
★ 磨料噴射技術
關鍵字(英) ★ abrasive
★ hetero layer removal
★ compound abrasive
論文目次 摘  要 i
Abstract iii
謝 誌 v
目  錄 vi
圖 目 錄 ix
表 目 錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 文獻回顧 6
1-3-1晶圓表面處理 6
1-3-2 磨料噴射加工法 10
1-3-3 田口實驗規劃 13
1-3-4反應曲面法 15
1-4 研究方法 16
1-5 論文架構 18
第二章 複合磨料之製備與加工性測試 19
2-1 前言 19
2-2 實驗設備與流程 21
2-2-1 實驗設備 21
2-2-2 實驗流程 24
2-3結果與討論 25
2-3-1 基材選擇 25
2-3-2 披覆磨料之溫度實驗 25
2-3-3 披覆磨料粒徑之影響 26
2-3-4 設定溫度之影響 29
2-3-5 披覆均勻性之關係 30
2-3-6 彈性複合磨料之成型觀測 31
2-4加工性測試 32
2-4-1 移除機制探討 32
2-4-2 定點噴射測試 34
2-4-3 單行程噴射測試 38
2-5 結論 41
第三章 彈性複合磨料之精微噴射技術 42
3-1 精微噴射技術參數組合 42
3-1-1 實驗設計設備與材料 42
3-1-2 實驗設計規劃 43
3-1-2-1 因子水準設定 46
3-1-2-2 直交表配置 47
3-1-3 實驗結果分析 48
3-1-3-1 因子效果回應分析 48
3-1-3-2 變異數分析(ANOVA)及F檢定(F-test) 52
3-1-3-3 多品質特性參數組合 54
3-1-4 驗證實驗 55
3-2 反應曲面實驗規劃 57
3-2-1 中央合成設計 58
3-3 單因子驗證 62
3-3-1 實驗規劃 62
3-3-2 噴射距離之影響 63
3-3-3 衝擊角度之影響 65
3-3-4 披覆粒徑之關係 67
3-3-5 噴射壓力之影響 68
3-3-6 平台轉速之影響 70
3-3-7 加工時間與粗糙度之關係 71
3-4 3D輪廓觀測與EDS 檢測 73
3-5 拉曼光譜分析 75
3-6 結論 76
第四章 磁彈性複合磨料應用於晶圓再生製程 77
4-1 磁場輔助磨料噴射技術 77
4-1-1 實驗設備與規劃 78
4-1-2 可行性分析與討論 80
4-2 磁彈性複合磨料 86
4-2-1 磁性奈米微粒製備 87
4-2-2 磁彈性複合磨料製備 88
4-3 磁彈性複合磨料應用於再生晶圓製程 92
4-3-1 參數定義及設定 92
4-3-2 實驗配置及結果 95
4-3-3 最適參數組合 101
第五章 結論 103
參考文獻 105
參考文獻 [1]. C.R. Yanga, P.Y. Chenb, C.H. Yanga, Y.C. Chiou and R.T. Lee “Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions” Sensors and Actuators A 119 (2005) 271–281
[2]. P. Pal, K. Sato, M. A. Gosalvez and M. Shikida, “Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants ”, J. Micromech. Microeng. 17 (2007)2299-230
[3]. P. Pal, K. Sato, M. Shikida and M. A. Gosálvez , “Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH”, Sensors and Actuators A 154 (2009) 192–203
[4]. W. J. Liua, Z. J. Pei and X. J. Xin , “Finite element analysis for grinding and lapping of wire-sawn silicon wafers”, Journal of Materials Processing Technology 129 (2002) 2-9
[5]. H.T. Young, H.T. Liao and H.Y. Huang , “Surface integrity of silicon wafers in ultra precision machining”, The International Journal of Advanced Manufacturing Technology 29 (2006) 372-378
[6]. N. S. Ong and V. C. Venkatesh, “ Semi-ductile grinding and polishing of Pyrex glass”, Journal of Materials Processing Technology 83 (1998) 261-266
[7]. L. Yin, E.Y.J. Vancoille, L.C. Lee, H. Huang, K. Ramesh and X.D. Liu, “High-quality grinding of polycrystalline silicon carbide spherical surfaces”, Wear 256 (2004) 197–207.
[8]. I.M. Hutchings, N.H. Macmillan and D.G. Rickerby, “Further studies of the oblique impact of a hard sphere against a ductile solid”, International Journal of Mechanical Sciences 23 (1981) 639–646.
[9]. E. Belloy, A. Sayah and M.A.M. Gijs, “Powder blasting for three-dimensional microstruturing of glass”, Sensors and Actuators A 86 (2000) 231–237.
[10]. P.J. Slikkerveer, P.C.P. Bouten, F.H. Veld and H. Scholten, “Erosion and damage by sharp particles”, Wear 217 (1998) 237–250.
[11]. F.H. Veld and P.J. Slikkerveer, “Towards prediction of flux effects in powder blasting nozzles”, Wear 215(1998)131-136
[12]. E. Belloy, S. Thurre, E. Walckers, A. Sayah and M.A.M.Gijs, “The introduction of powder blasting for sensor and micro system applications”, Sensors and Actuators A 84 (2000) 330–337.
[13]. M.W. Sin, J.G. Song, “Study on the photoelectrochemical etching process of semiconducting 6H-SiC wafer”, Materials Science and Engineering B 95 (2002) 191–194.
[14]. H. Wensink, H. V. Jansen, J. W. Berenschot, M. C. Elwenspoek, “Mask materials for poeder blasting”, J Micromech. Microeng. 10 (2000) 175-180.
[15]. H. Wensink, H. V. Jansen, J. W. Berenschot and M. C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769-774.
[16]. S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek and A. Vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, J.Micromech.Microeng.11 (2001) 386-389.
[17]. E. Belloy, A. Sayah and M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
[18]. M. Wakuda, Y. Yamauchi and S. Kanzaki, “Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 193–198.
[19]. R. Balasubramaniama, J. Krishnana and N. Ramakrishnan, “A study on the shape of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102–106.
[20]. J. A. Plaza, M. J. Lopez, A. Moreno, M. Duch and C. Cane, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310
[21]. D. Jianxin, F. Yihua, D. Zeliang and S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
[22]. D. S. Park, M. W. Cho, H. Lee and W. S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234-240.
[23]. A. Sayah, V. K. Parashar, A. G. Pawlowski and M. A. M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90
[24]. C.Yamahata, F. Lacharme, Y. Burri and M. A.M. Gijs, “A ball valve micropump in glass fabricated by powder blasting”, Sensor and Actuators B110 (2005) 1-7.。
[25]. M. Junkar, B. Jurisevic, M. Fajdiga and M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
[26]. F. Ghobeity, M. Papini and J.K Spelt, “Computer simulation of particle interference in abrasive jet micromachining”, Wear 263 (2007) 265-269
[27]. H. Getu , J.K. Spelt and M. Papini, “Cryogenically assisted abrasive jet micromachining of polymers” , Journal of Micromechanics And Micro Engineering 18(2008) 115010 (8pp)
[28]. T. Mineta, T. Takada, E. Makino , T. Kawashima and T. Shibata, “A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal” , Journal of Micromechanics And Micro Engineering . 19 (2009) 015031 (8pp)
[29]. M.S. Phadke, “Quality engineering using robust design”, AT& T Laboratories (1989).
[30]. F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, Neural Computing 7 (1995) 225–245.
[31]. W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology 84 (1998) 122-129.
[32]. J.H. Lau, C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing 233 (2000) 219–225.
[33]. A. Mertol, “Application of the Taguchi Method to Chip Scale Package (CSP) Design”, IEEE Transactions on Advanced Packaging 23 (2000) 266–276.
[34]. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, (2001) 1–6.
[35]. Y.S. Tarng, S.C. Juang and C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology 128 (2002) 1–6.
[36]. J.M. Liang and P.J. Wang, “Self-learning control for injection molding based on neural networks optimization”, Journal of Injection Molding Technology 6 (2002) 58–72.
[37]. J.A. Ghani, I.A. Choudhury and H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology 145 (2004) 84–92.
[38]. C.L. Yang, S.H. Sheu and K.T. Yu , “Optimal machining parameters in the cutting process of glass fibre using the reliability analysis based on the Taguchi method”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222 (2008) 1075-1082
[39]. F.C. Tsai, B.H. Yan, C.Y. Kuan and F.Y. Huang , “A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel”, International Journal of Machine Tools and Manufacture 48(2008) 932-945
[40]. A. A. Refaie, “Grey-data envelopment analysis approach for solving the multi-response problem in the Taguchi method”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224 (2010) 147-158
[41]. J. S. Kwak, “Application of Taguchi and response surface methodologies for geometric error in surface grinding process ”,International Journal of Machine Tools and Manufacture 45 (2005) 327-334
[42]. B. B. Pradhan and B. Bhattacharyya, “ Modelling of micro- electrodischarge machining during machining of titanium alloy Ti–6Al–4V using response surface methodology and artificial neural network algorithm”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(2009) 683-693
[43]. J.S. Dureja, V. K. Gupta, V. S. Sharma and M. Dogra , “Design optimization of cutting conditions and analysis of their effect on tool wear and surface roughness during hard turning of AISI-H11 steel with a coated–mixed ceramic tool”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(2009) 1441-1453
[44]. J. Yan, T.Asami, H. Harada and T. Kuriyagawa, “Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy”, Precision Engineering 32, (2008) 186-195.
指導教授 顏炳華(Biing Hwa Yan) 審核日期 2011-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明