博碩士論文 92343027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.220.102.112
姓名 杜威達(Wei-Da Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 濕式粉末聚合於高速高剪力環境下之成長行為研究
(An investigation into the high shear wet granulation behaviours and the regime map development)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 「濕式顆粒聚合作用」常見於自然界中。其原理也經常被工業界使用來處理粉顆粒材料,例如製藥、粉末冶金、食品、農業、化工原料等等。其基本的過程是利用液體使顆粒彼此沾黏,藉以聚合成形,並利用各種操作條件與材料特性,來達到特定材料性質的技術。
高速、高剪力聚合機器 (high shear granulator)是工業界常見之儀器,因為高剪力的作用可以處理各種黏度範圍之添加液體。因此本文以該儀器為研究對象,並搭配常見之化工原料進行研究。分析方式則採用力學分析與質料交換的觀點來判定各個操作條件下的統御機制,與成長模式的定義。在假設粉末不溶解在添加液體中的前提下,本研究發現粉末材料的尺寸對於聚合現象有很大的影響,包括成長率、初始粒徑以及最終粒徑。液體添加量的影響則表現在液體分佈的速率與顆粒沾黏能力上。此外,顆粒聚合成功的關鍵在於彼此順利沾黏並且發生塑性變形。其中塑性變形的程度除了液體添加量以外還受到攪拌速率的影響,兩者呈現非線性關係。在成長模式方面,本研究所發展之預測方式可以釐清目前理論的混淆之處。根據該預測模式發現:同樣的固體與液體材料可以透過適當的操作設計,展現出所有的成長模式。此外,亦發現粒徑集中化的關鍵在於液體分佈集中化,恰與其他儀器相同 [1]。這些發現的應用皆對目前業界有高度應用的價值。最後本論文也提供了數項值得延伸的研究主題與建議。
摘要(英) This thesis investigated the interactions between materials properties and operating conditions in high shear wet granulation. It was found that particles sizes between 1.5 to 85 μm had a significant effect on the granule size growth rate, final average size of granules and the distribution of granule size. The liquid-to-solid (L/S) ratio had a significant effect on the growth rate as well. It was possibly because more binder addition could result in better deformability, which is essential for colliding granules to be adhered onto each other permanently. The effect of L/S on agglomeration depended on the magnitude of impeller speed, and the relationship of each other is not linear.
This thesis also proposed a more clarified definition to allocate the accurate boundaries between steady growth, induction behaviour and the rapid growth on the growth regime map. This can enable a better prediction of granulation behaviours. A growth regime map for this thesis was drawn. This map showed that a single system of solid and binder can exhibit five growth behaviours. A pre-requisite of monomodal GSD (granule size distribution) was found the same with that in a rotating drum [1]. Several suggested experiments regarding its microscopic description and other possible investigation plans were proposed in Chapter 5.
關鍵字(中) ★ 粉末
★ 聚合
★ 剪力
★ 粒徑
★ 混合
★ 成長
★ 攪拌
關鍵字(英) ★ regime map
★ particle size
★ liquid-to-solid ratio
★ L/S
★ impeller speed
★ growth behaviour
★ high shear mixer
★ granulation
★ agglomeration
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Content iv
List of figures vi
List of tables viii
Nomenclature ix
Chapter 1 Introduction 1
1.1 Definition of granulation 1
1.2 Classification of size enlargement processes 1
1.2.1 Growth/tumble agglomeration 2
1.2.2 Coating/Layering 3
1.2.3 Agglomeration using pressure 3
1.2.4 Thermal effects 4
1.2.5 Drop formation 4
1.3 Applications and objectives 4
1.4 Economic scale 6
Chapter 2 Theories and mechanisms 8
2.1 Granulation processes (wet granulation) 8
2.1.1 Wetting and nucleation 8
2.1.2 Consolidation and growth 13
2.1.3 Attrition and breakage 17
2.2 Growth regime map 23
2.2.1 Evolution 23
2.2.2 Limitations of the regime map 29
2.3 Effects of operating conditions 32
2.3.1 Effects of impeller speed and effects of a chopper 32
2.3.2 Effects of particle size and the distribution 34
2.3.3 Effects of the nature of the liquid binder 35
2.4 Equipments for wet granulation 37
2.5 Population balance model 39
2.6 Motives 42
Chapter 3 The effect of powder size on induction behaviour and binder distribution 44
3.1 Preface 44
3.2 Experiment 46
3.2.1 Materials 46
3.2.2 Equipments 47
3.2.3 Experimental processes 50
3.3 Results and discussions 51
3.3.1 Mean diameter of the granules: L/S = 20% 51
3.3.2 Mean diameter of the granules: L/S = 17% 54
3.3.3 Mean diameter of the granules: comparisons 56
3.3.4 GSD measurements: L/S = 20% 59
3.3.5 GSD measurements: L/S = 17% 63
3.3.6 Binder distribution: 20% 67
3.3.7 Binder distribution: 17% 71
3.3.8 Binder distribution: comparisons 74
3.4 Conclusions 77
Chapter 4 Exploring the regime map for high-shear mixer granulation 78
4.1 Preface 78
4.2 Experiment 82
4.2.1 Materials 82
4.2.2 Experimental setups and processes 84
4.3 Results and discussions 87
4.3.1 Effects of the L/S ratio and impeller speed 87
4.3.2 GSD and the change of specific granules sizes 91
4.3.2.1 Nucleation only 91
4.3.2.2 Steady growth 93
4.3.2.3 Induction behavior 97
4.3.2.4 Rapid growth 100
4.3.2.5 Unconstrained growth 102
4.3.2.6 Reproducibility tests 104
4.3.3 Regime map for the system 107
4.4 Conclusions 109
Chapter 5 Future works & suggestions 110
5.1 Scope of the chapter 110
5.2 The key to achieve uniform GSD 110
5.3 The most favorite growth behaviour 112
5.4 Formulation design 114
5.5 Temperature distribution within the mixing field 115
Chapter 6 Conclusions 119
Reference list 121
參考文獻 [1] P. A. L. Wauters, R. B. Jakobsen, J. D. Litster, G. M. H. Meesters, and B. Scarlett, Liquid distribution as a means to describing the granule growth mechanism, Powder Technology, 123 (2002) 166-177.
[2] M. Rhodes, Introduction to Particle Technology, John Wiley & Sons, 1998.
[3] K. L. Kadam, Granulation Technology for Bioproducts, Informa Health Care, Boston 1990.
[4] M. Jacob, Granulation equipment, in: A. D. Salman, M. J. Hounslow, and J. P. K. Seville (Eds.), Granulation, Elsevier, Amsterdam, 2007, pp. 417-476.
[5] http://www.glatt.com/e/01_technologien/01_03_02_02.htm
[6] J. Kowalska and A. Lenart, The influence of ingredients distribution on properties of agglomerated cocoa products, Journal of Food Engineering, 68 (2005) 155-161.
[7] V. Landillon, D. Cassan, M. Morel, and B. Cuq, Flowability, cohesive, and granulation properties of wheat powders, Journal of Food Engineering, 86 (2008) 178-193.
[8] T. K. Bock and U. Kraas, Experience with the Diosna mini-granulator and assessment of process scalability, European Journal of Pharmaceutics and Biopharmaceutics, 52 (2001) 297-303.
[9] K. Szymocha, Industrial applications of the agglomeration process, Powder Technology, 130 (2003) 462-467.
[10] D. Rossetti and S. J. R. Simons, A microscale investigation of liquid bridges in the spherical agglomeration process, Powder Technology, 130 (2003) 49-55.
[11] P. R. Mort, S. W. Capeci, and J. W. Holder, Control of agglomerate attributes in a continuous binder-agglomeration process, Powder Technology, 117 (2001) 173-176.
[12] J. M. H. Poon, C. D. Immanuel, F. J. I. Doyle, and J. D. Litster, A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena, Chemical Engineering Science, 63 (2008) 1315-1329.
[13] A. S. Blair, Dust explosion incidents and regulations in the United States, Journal of Loss Prevention in the Process Industries, 20 (2007) 523-529.
[14] W. Pietsch, Agglomeration Processes: Phenomena, Technologies, Equipment, Wiley-VCH, 2002.
[15] S. M. Iveson and J. D. Litster, Growth regime map for liquid-bound granules, AIChE Journal, 44 (1998) 1510-1518.
[16] E. M. Holt, The properties and forming of catalysts and absorbents by granulation, Powder Technology, 140 (2004) 194-202.
[17] M. Gagnon and J. Lexchin, The cost of pushing pills: A new estimate of pharmaceutical promotion expenditures in the United States, PLoS Medicine, 5 (2008) 29-33.
[18] Pharmaceutical research and manufacturers of America. 2006. Washington, DC, Pharma. Pharmaceutical Industry Profile 2006.
[19] S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review, Powder Technology, 117 (2001) 3-39.
[20] S. M. Iveson, J. A. Beathe, and N. W. Page, The dynamic strength of partially saturated powder compacts: the effect of liquid properties, Powder Technology, 127 (2002) 149-161.
[21] K. P. Hapgood, J. D. Litser, and R. Smith, Nucleation regime map for liquid bound granules, AIChE Journal, 49 (2003) 350-361.
[22] T. Schaefer and C. Mathiesen, Melt pelletization in a high shear mixer. IX. Effects of binder particle size, International Journal of Pharmaceutics, 139 (1996) 139-148.
[23] T. Schaefer and C. Mathiesen, Melt pelletization in a high shear mixer. VIII. Effects of binder viscosity, International Journal of Pharmaceutics, 139 (1996) 125-138.
[24] S. L. Rough, D. I. Wilson, A. E. Bayly, and D. W. York, Mechanisms in high-viscosity immersion-granulation, Chemical Engineering Science, 60 (2005) 3777-3793.
[25] M. J. Hounslow, M. Oullion, and G. K. Reynolds, Kinetic models for granule nucleation by the immersion mechanism, Powder Technology, (2008).
[26] S. H. Schaafsma, N. W. F. Kossen, M. T. Mos, L. Blauw, and A. C. Hoffmann, Effects and control of humidity and particle mixing in fluid-bed granulation, AIChE Journal, 45 (1999) 1202-1210.
[27] W. J. Wildeboer, E. Koppendraaier, J. D. Litser, T. Howes, and G. Meester, A novel nucleation apparatus for regime separated granulation, Powder Technology, 171 (2007) 96-105.[28] S. J. R. Simons and R. J. Fairbrother, Direct observations of liquid binder-particle interactions: the role of wetting behaviour in agglomerate growth, Powder Technology, 110 (2000) 44-58.
[29] J. D. Litser, K. P. Hapgood, J. N. Michaels, A. Sims, M. Roberts, S. K. Kameneni, and T. Hsu, Liquid distribution in wet granulation: dimensionless spray flux, Powder Technology, 114 (2001) 32-39.
[30] K. P. Hapgood, J. D. Litser, E. T. White, P. R. Mort, and D. G. Jones, Dimensionless spray flux in wet granulation: Monte-Carlo simulations and experimental validation, Powder Technology, 141 (2004) 20-30.
[31] S. M. Iveson, J. D. Litster, and B. J. Ennis, Fundamental studies of granule consolidation Part 1: Effects of binder content and binder viscosity, Powder Technology, 88 (1996) 15-20.
[32] J. S. Fu, Y. S. Cheong, G. K. Reynolds, M. J. Adams, A. D. Salman, and M. J. Hounslow, An experimental study of the variability in the properties and quality of wet granules, Powder Technology, 140 (2004) 209-216.
[33] B. J. Ennis, G. Tardos, and R. Pfeffer, A microlevel-based characterization of granulation phenomena, Powder Technology, 65 (1991) 257-272.
[34] P. A. L. Wauters, R. van de Water, J. D. Litster, G. M. H. Meesters, and B. Scarlett, Growth and compaction behaviour of copper concentrate granules in a rotating drum, Powder Technology, 124 (2002) 230-237.
[35] F. Hoornaert, P. A. L. Wauters, G. M. H. Meesters, S. E. Pratsinis, and B. Scarlett, Agglomeration behaviour of powders in a Lodige mixer granulator, Powder Technology, 96 (1998) 116-128.
[36] P. C. Kapur, Balling and Granulation, Advances in Chemical Engineering, 10 (1978) 55-123.
[37] G. I. Tardos, M. I. Khan, and P. R. Mort, Critical parameters and limiting conditions in binder granulation of fine powders, Powder Technology, 94 (1997) 245-258.
[38] A. M. Bouwman, M. R. Visser, G. M. H. Meesters, and H. W. Frijlink, The use of Stokes deformation number as a predictive tool for material exchange behaviour of granules in the 'equilibrium phase' in high shear granulation, International Journal of Pharmaceutics, 318 (2006) 78-85.
[39] B. J. Ennis, J. Li, G. I. Tardos, and R. Pfeffer, The influence of viscosity on the strength of an axially strained pendular liquid bridge, Chemical Engineering Science, 45 (1990) 3071-3088.
[40] G. Barnocky and R. H. Davis, Elastohydrodynamic collision and rebound of spheres: experimental verification, Physics of Fluids, 31 (1988) 1324-1329.
[41] H. Rumpf, The Strength of Granules and Agglomerates, in: W. A. Knepper (Ed.), Agglomeration, Wiley, New York, 1962, pp. 379-418.
[42] I. Talu, G. I. Tardos, and M. I. Khan, Computer simulation of wet granulation, Powder Technology, 110 (2000) 59-75.
[43] P. J. T. Mills, J. P. K. Seville, P. C. Knight, and M. J. Adams, The effect of binder viscosity on particle agglomeration in a low shear mixer/agglomerator, Powder Technology, 113 (2000) 140-147.
[44] S. J. R. Simons, J. P. K. Seville, and M. J. Adams, An analysis of the rupture energy of pendular liquid bridges, Chemical Engineering Science, 49 (1994) 2331-2339.
[45] S. M. Iveson, P. A. L. Wauters, S. Forrest, J. D. Litster, G. M. H. Meesters, and B. Scarlett, Growth regime map for liquid-bound granules: further development and experimental validation, Powder Technology, 117 (2001) 83-97.
[46] K. P. Hapgood, J. D. Litster, S. R. Biggs, and T. Howes, Drop Penetration into Porous Powder Beds, Journal of Colloid and Interface Science, 253 (2002) 353-366.
[47] S. L. Rough, D. I. Wilson, and D. W. York, A regime map for stages in high shear mixer agglomeration using ultra-high viscosity binders, Advanced Powder Technology, 16 (2005) 373-386.
[48] K. P. Hapgood, S. M. Iveson, J. D. Litster, and L. X. Liu, Granulation rate processes, in: A. D. Salman, M. J. Hounslow, and J. P. K. Seville (Eds.), Granulation, Elsevier, Amsterdam, 2007, pp. 897-978.
[49] P. C. Knight, J. P. K. Seville, A. B. Wellm, and T. Instone, Prediction of impeller torque in high shear powder mixers, Chemical Engineering Science, 56 (2001) 4457-4471.
[50] K. van den Dries, O. M. de Vegt, V. Girard, and H. Vromans, Granule breakage phenomena in a high shear mixer; influence of process and formulation variables and consequences on granule homogeneity, Powder Technology, 133 (2003) 228-236.
[51] S. M. Iveson and N. W. Page, Brittle to Plastic Transition in the Dynamic Mechanical Behavior of Partially Saturated Granular Materials, Journal of Applied Mechanics, 71 (2004) 470-475.
[52] S. M. Iveson and N. W. Page, The dynamic strength of partially saturated powder compacts: effects of particle shape and density, World congress of particle technology 4, 2002.
[53] S. M. Iveson and N. W. Page, Dynamic strength of liquid-bound granular materials: The effect of particle size and shape, Powder Technology, 152 (2005) 79-89.
[54] A. Ohike, K. Ashihara, and R. Ibuki, Granulation monitoring by fast Fourier transform technique, Chemical & Pharmaceutical Bulletin, 47 (1999) 1734-1739.
[55] A. Faure, P. York, and R. C. Rowe, Process control and scale-up of pharmaceutical wet granulation processes: a review, European Journal of Pharmaceutics and Biopharmaceutics, 52 (2001) 269-277.
[56] G. I. Tardos, K. P. Hapgood, O. O. Ipadeola, and J. N. Michaels, Stress measurements in high-shear granulators using calibrated "test" particles: application to scale-up, Powder Technology, 140 (2004) 217-227.
[57] M. J. Adams, B. Edmondson, D. G. Caughey, and R. Yahya, An experimental and theoretical study of the squeeze-film deformation and flow of elastoplastic fluids, Journal of Non-Newtonian Fluid Mechanics, 51 (1994) 61-78.
[58] G. Lian, Y. Xu, W. Huang, and M. J. Adams, On the squeeze flow of a power-law fluid between rigid spheres, Journal of Non-Newtonian Fluid Mechanics, 100 (2001) 151-164.
[59] P. C. Knight, A. Johansen, H. G. Kristensen, T. Schaefer, and J. P. K. Seville, An investigation of the effects on agglomeration of changing the speed of a mechanical mixer, Powder Technology, 110 (2000) 204-209.
[60] H. Eliasen, T. Schaefer, and H. Gjelstrup Kristensen, Effects of binder rheology on melt agglomeration in a high shear mixer, International Journal of Pharmaceutics, 176 (1998) 73-83.
[61] T. Schaefer, Melt pelletization in a high shear mixer. X. Agglomeration of binary mixtures, International Journal of Pharmaceutics, 139 (1996) 149-159.
[62] P. C. Knight, An investigation of the kinetics of granulation using a high shear mixer, Powder Technology, 77 (1993) 159-169.
[63] H. Eliasen, H. G. Kristensen, and T. Schaefer, Growth mechanisms in melt agglomeration with a low viscosity binder, International Journal of Pharmaceutics, 186 (1999) 149-159.
[64] P. C. Knight, T. Instone, J. M. K. Pearson, and M. J. Hounslow, An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration, Powder Technology, 97 (1998) 246-257.
[65] T. Schaefer, Growth mechanisms in melt agglomeration in high shear mixers, Powder Technology, 117 (2001) 68-82.
[66] K. Saleh, L. Vialatte, and P. Guigon, Wet granulation in a batch high shear mixer, Chemical Engineering Science, 60 (2005) 3763-3775.
[67] Tu, W. D. An investigation of the agglomeration behavior in high-shear mixer granulator. 2005. PhD Qualification.
[68] A. Johansen and T. Schaefer, Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer, European Journal of Pharmaceutical Sciences, 12 (2001) 297-309.
[69] M. B. Mackaplow, L. A. Rosen, and J. N. Michaels, Effect of primary particle size on granule growth and endpoint determination in high-shear wet granulation, Powder Technology, 108 (2000) 32-45.
[70] T. Schaefer and C. Mathiesen, Melt pelletization in a high shear mixer. VII. Effects of product temperature, International Journal of Pharmaceutics, 134 (1996) 105-117.
[71] K. Hotta, K. Takeda, and K. Iinoya, The capillary binding force of a liquid bridge, Powder Technology, 10 (1974) 231-242.
[72] G. Lian, C. Thornton, and M. J. Adams, A Theoretical study of the liquid bridge forces between two rigid spherical bodies, Journal of Colloid and Interface Science, 161 (1993) 138-147.
[73] D. N. Mazzone, G. I. Tardos, and R. Pfeffer, The behavior of liquid bridges between two relatively moving particles, Powder Technology, 51 (1987) 71-83.
[74] M. F and X.Su, Analysis of liquid bridge between spherical particles, China Particuology, 5 (2007) 420-424.
[75] N. L. Cross and R. G. Picknett, Comment on the paper "the effect of capillary liquid on the force of adhesion between spherical solid particles", Journal of Colloid and Interface Science, 26 (1968) 247-249.
[76] M. Bardin, P. C. Knight, and J. P. K. Seville, On control of particle size distribution in granulation using high-shear mixers, Powder Technology, 140 (2004) 169-175.
[77] B. Van Melkebeke, B. Vermeulen, C. Vervaet, and J. P. Remon, Melt granulation using a twin-screw extruder: A case study, International Journal of Pharmaceutics, 326 (2006) 89-93.
[78] H. Leuenberger and M. Lanz, Pharmaceutical powder technology - from art to science: the challenge of the FDA's Process Analytical Technology initiative, Advanced Powder Technology, 16 (2005) 3-25.
[79] F. J. Muzzio, T. Shinbrot, and B. J. Glasser, Powder technology in the pharmaceutical industry: the need to catch up fast, Powder Technology, 124 (2002) 1-7.
[80] I. N. Bjorn, A. Jansson, M. Karlsson, S. Folestad, and A. Rasmuson, Empirical to mechanistic modelling in high shear granulation, Chemical Engineering Science, 60 (2005) 3795-3803.
[81] H. M. Hulburt and S. Katz, Some problems in particle technology: A statistical mechanical formulation, Chemical Engineering Science, 19 (1964) 555-574.
[82] A. A. Adetayo, J. D. Litser, S. E. Pratsinis, and B. J. Ennis, Population balance modelling of drum granulation of materials with wide size distribution, Powder Technology, 82 (1995) 37-49.
[83] M. J. Hounslow, R. L. Ryall, and V. R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE Journal, 34 (1988) 1821-1832.
[84] N. Ouchiyama and T. Tanaka, The Probability of Coalescence in Granulation Kinetics, Industrial & Engineering Chemistry Process Design and Development, 14 (1975) 286-289.
[85] N. Ouchiyama and T. Tanaka, Kinetic analysis of continuous pan granulation. Possible explanations for conflicting experiments and several indications for practice, Industrial & Engineering Chemistry Process Design and Development, 20 (1981) 340-348.
[86] N. Ouchiyama and T. Tanaka, Kinetic analysis and simulation of batch granulation, Industrial & Engineering Chemistry Process Design and Development, 21 (1981) 29-35.
[87] W. J. Wildeboer, J. D. Litster, and I. T. Cameron, Modelling nucleation in wet granulation, Chemical Engineering Science, 60 (2005) 3751-3761.
[88] G. K. Reynolds, P. K. Le, and A. M. Nilpawar, High shear granulation, in: A. D. Salman, M. J. Hounslow, and J. P. K. Seville (Eds.), Granulation, Elsevier, Amsterdam, 2007, pp. 3-19.
[89] A. C. Scott, M. J. Hounslow, and T. Instone, Direct evidence of heterogeneity during high-shear granulation, Powder Technology, 113 (2000) 205-213.
[90] D. Voinovich, M. Moneghini, B. Perissutti, and E. Franceschinis, Melt pelletization in high shear mixer using a hydrophobic melt binder: influence of some apparatus and process variables, European Journal of Pharmaceutics and Biopharmaceutics, 52 (2001) 305-313.
[91] J. D. Litster, Scaleup of wet granulation processes: science not art, Powder Technology, 130 (2003) 35-40.
[92] T. Schaefer, P. Holm, and H. G. Kristensen, Melt granulation in a laboratory scale high shear mixer, Drug Development and Industrial Pharmacy, 16 (1990) 1249-1277.
[93] Powder technology handbook, New York : Marcel Dekker, 1997.
[94] P. Vonk, C. P. F. Guillaume, J. S. Ramaker, H. Vromans, and N. W. F. Kossen, Growth mechanisms of high-shear pelletisation, International Journal of Pharmaceutics, 157 (1997) 93-102.
[95] A. Goldszal and J. Bousquet, Wet agglomeration of powders: from physics toward process optimization, Powder Technology, 117 (2001) 221-231.
[96] K. P. Hapgood, J. D. Litster, S. R. Biggs, and T. Howes, Drop Penetration into Porous Powder Beds, Journal of Colloid and Interface Science, 253 (2002) 353-366.
[97] M. J. Hounslow, J. M. K. Pearson, and T. Instone, Tracer studies of high-shear granulation: II. Population balance modeling, AIChE Journal, 47 (2001) 1984-1999.
[98] S. M. Iveson, Limitations of one-dimensional population balance models of wet granulation processes, Powder Technology, 124 (2002) 219-229.
[99] X. Liu and D. Litster, Population balance modelling of granulation with a physically based coalescence kernel, Chemical Engineering Science, 57 (2002) 2183-2191.
[100] D. Verkoeijen, G. A. Pouw, G. M. H. Meesters, and B. Scarlett, Population balances for particulate processes - a volume approach, Chemical Engineering Science, 57 (2002) 2287-2303.
[101] P. A. L. Wauters, B. Scarlett, L. X. Liu, J. D. Litster, and G. M. H. Meesters, A population balance model for high shear granulation, Chemical Engineering Communications, 190 (2003) 1309-1334.
[102] A. Darelius, A. Rasmuson, I. N. Bjön, and S. Folestad, High shear wet granulation modelling - a mechanistic approach using population balances, Powder Technology, 160 (2005) 209-218.
[103] A. Darelius, H. Brage, A. Rasmuson, I. Niklasson Bjön, and S. Folestad, A volume-based multi-dimensional population balance approach for modelling high shear granulation, Chemical Engineering Science, 61 (2006) 2482-2493.
[104] A. Darelius, A. Rasmuson, I. N. Bjön, and S. Folestad, High shear wet granulation modelling - a mechanistic approach using population balances, Powder Technology, 160 (2005) 209-218.
[105] R. H. Bridson, P. T. Robbins, Y. Chen, D. Westerman, C. R. Gillham, T. C. Roche, and J. P. K. Seville, The effects of high shear blending on alpha-lactose monohydrate, International Journal of Pharmaceutics, 339 (2007) 84-90.
[106] T. Allen, Particle Size Measurement, Powder Sampling and Particle Size Measurement, Chapman & Hall, 1997.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2008-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明