博碩士論文 92343029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:44.211.239.1
姓名 彭坤增(Kun-Cheng Peng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鈧共摻雜含量(0~2.37wt%)對摻鋁氧化鋅透明導電薄膜之結構與特性影響研究
(Effect of Sc co-dopants (0~2.37wt%) on the structure and characterization of the Al-doped Zinc Oxide transparent conductive films)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用RF-DC濺鍍系統,分別以ZnO、Al(x)Sc合金(其中x=0, 0.4, 0.8, 1.7wt%) 雙靶 以及純ZnO、純鋁Al、純Sc等三靶,在STN(Super twisted nematic)玻璃上析鍍氧化鋅、摻鋁氧化鋅、鈧與鋁共摻雜之氧化鋅(Al, Sc co-doped zinc oxide)等透明導電薄膜。此薄膜經ICP分析得知: 由雙靶式所得薄膜之鈧含量(wt%)較低 (介於0 ~0.083),而三靶式所得薄膜之鈧含量(wt%)較高(介於0.42 ~2.37)。薄膜組成的變化,影響其結構與性質甚大。
薄膜的結晶結構,經XRD分析得知:純ZnO薄膜屬於具(0002)優選之Wurtzite結晶,摻雜鋁後,結晶變形,共摻雜鋁、鈧後之薄膜,其結晶之[0002]優選方向,隨含鈧濃度增加而逐漸下降,當薄膜中含鈧量超過0.425%後,由[ 013]取代[0002]方向。由TEM觀察薄膜橫截面,顯示這些薄膜均由柱狀結晶構成,垂直於玻璃界面,晶徑接近界面處較小(約20nm),隨遠離界面而增大(約65nm)。摻雜鈧使鍍膜晶粒細化,鈧摻雜量介於0.42~2.37 wt% 時,在HRTEM下,每一柱狀晶底部顯示出細小晶粒,大部份柱狀晶內則出現與疊差缺陷;部份柱狀晶內會出現垂直於界面方向之Moire fringe contrast缺陷。薄膜在氧氣氛下加熱400℃一小時,晶粒中之疊差缺陷密度明顯減少。
薄膜的物理性質均顯示:對可見光透光性良好,其電阻率則隨薄膜中鈧的摻雜量增加而大幅下降。在含氧氣氛中加熱400℃一小時,鋁、鈧共摻雜之氧化鋅薄膜,其電阻率僅增加數歐姆-厘米(Ω-cm),較一般氧化鋅薄膜之電阻率低五次冪。薄膜經XPS檢測,模擬解析後,得知其中之氧成份,具有四種不同的化學態,分別對應不同之鍵結能:O(I) 鍵結能在530.00±0.15 eV屬於 Sc2O3 鍵結中之氧;O(II) 鍵結能在530.15 ± 0.15 eV,屬於纖維鋅礦結構中化學計量氧數量;O(III) 鍵結能在531.25 ± 0.20 eV ,與ZnO 薄膜中之缺氧有關;O(IV) 鍵結能在532.40 ± 0.15eV,屬於薄膜試片表面與氧氣之鍵結。
摘要(英) Transparent conductive films of Al, Sc co-doped zinc oxide were deposited on a super twisted nematic (STN) glass by using RF-DC sputtering on two targets (i.e., ZnO and Al-(x)Sc where x =0, 0.4, 0.8, 1.7wt%) and three targets (ZnO, Al and Sc) systems. Through inductively coupled plasma analysis, the films prepared from binary targets revealed less Sc-content (from 0 to 0.083 wt.%) than those (in the range 0.42 ~2.37 wt.%) from ternary targets. The crystal structure and characterization of the films were determined by the composition of the films.
Analysis of x-ray diffraction (XRD) revealed that pure zinc oxide film belonging to wurtzite crystal textured on (0002). Doping of aluminum results in deformation of the zinc oxide and co doping of Sc shifts the crystal texture from (0002) to ( 013) as the concentration of Sc-dopant higher than 0.42 wt. %. Examination through transmission electron microscope (TEM) indicated that the oxide films consist of columnar crystals grown from the interface between the film and the glass. Smaller grains (around 20 nm) were found near the interface and greater ones (roughly 65 nm) with going away from the interface. Through examination by high resolution transmission electron microscope (HRTEM), the oxides containing Sc-codopant in the range from 0.42 to 2.37 wt.% lead to numerous fine grains on the bottom and a lot of stacking faults in the upper portion of the columnar crystals. In addition, some defects vertical to the film interface seemed to be Moire fringe contrasts in the colmns. The density of stacking faults in the films decreased prominently after heat treatment of the oxides at 400 ℃ for 1 h under ambient atmosphere.
Physical properties such as optical transparency and electric resistivity were of interest. The optical transparency is higher than 80% for all the oxides. The electric resistivity of the Al, Sc co-doped oxide films is much lower than that of Al-doped ones. Annealing at 400 ℃ under ambient atmosphere for 1 h, the resistivity increases only a fewΩ-cm for the Al, Sc co-doped oxides but a huge increase (up to MΩ-cm) for the ordinary Al-doped oxides. X-ray photoelectron spectroscopy (XPS) indicated that the oxygen in the films could be classified as O(I), O(II), O(III) and O(IV) depending upon the binding energy (BE). O(I) with BE at530.00±0.15 eV belongs to the oxygen in Sc2O3, O(II) with BE at 530.15 ± 0.15 eV belongs to the stoichiometric oxygen in the ZnO wurtzite, O(III) with BE at 531.25 ± 0.20 eV belongs to deficient oxygen in ZnO, and O(IV) with BE at 532.40 ± 0.15eV belongs to gaseous oxygen bound to the free surface of the oxide.
關鍵字(中) ★ 柱狀晶
★ 電阻率
★ 透明導電氧化膜
★ 摻鋁氧化鋅
★ 鋁、鈧共摻雜氧化鋅
★ 雙靶
★ 三靶濺鍍薄膜
★ 氧化鋅
關鍵字(英) ★ Sc co-doped zinc oxides
★ Al
★ zinc oxide
★ Al-dope zinc oxide
論文目次 中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1. 1 前言 1
1. 2 研究目的 3
第二章 理論基礎與文獻討論 15
2.1 理論基礎 15
2.1.1 電漿 15
2.1.2 濺鍍理論 17
2.1.3 磁控濺鍍系統 18
2.1.4 鍍層的成核 20
2.1.5 鍍層微結構的 Thornton 模型 22
2.2 文獻討論 23
2.2.1 ZnO 薄膜的特性 23
2.2.2 結晶特性 28
第三章 實驗方法與儀器設備 37
3.1 實驗流程 37
3.2 實驗原料 38
3.3 實驗設備 40
3.4 濺鍍種類 42
3.5 濺鍍前處理 43
3.6 鍍膜熱處理實驗 44
3.7 鍍膜性質分析及測量 44
第四章 RF與DC濺鍍系統對ZnO及Al-xSc(x=0,0.4,0.8 ,1.7 wt%)靶材製備氧化鋅摻雜鋁鈧合金之導電薄膜研究 53
4.1 薄膜之X—光繞射(X-ray diffraction, XRD) 53
4.2 薄膜微結構之穿透式電子顯微(TEM)鏡觀察 57
4.3 薄膜光學性質分析 59
4.4 薄膜導電性質分析 61
4.5 鍍膜酸溶液溶解後感應耦合電漿原子發射光譜分析 62
4.6 XPS 分析 63
4.7 薄膜示差(DSC)分析 65
4.8結論 66
第五章 磁控濺射法製備鈧摻雜AZO導電膜其微結構及特性之探討2.1 理
論基礎 67
5.1薄膜之X—光繞射(X-ray diffraction, XRD) 67
5.2 薄膜微結構之穿透式電子顯微鏡(TEM)觀察 70
5.3 XPS 分析 72
5.4薄膜光學性質分析 73
5.5薄膜導電性質分析 76
5.6結論 77
第六章 鋁鈧靶材沉積不同含量(0,0.42,1.22,2.37 wt%)Sc 於氧化鋅薄膜
的結構特性研究 78
6.1 薄膜之X-光繞射(X-ray diffraction, XRD) 80
6.2 薄膜微結構之高解析度穿透式電子顯微鏡(HRTEM)觀察 89
6.3 薄膜光學特性分析 100
6.4薄膜導電性質分析 102
6.5 XPS 分析 104
6.6結論 106
第七章 鋁、鈧沉積2.37wt%Sc氧化鋅薄膜在氧環境下熱處理的影響研究 107
7.1薄膜之X—光繞射(X-ray diffraction, XRD) 108
7.2薄膜微結構之高解析穿透式電子顯微鏡(HRTEM)觀察 111
7.3 薄膜光學特性分析 122
7.4薄膜導電性質分析 124
7.5 XPS 分析 126
7.6結論 129
第八章 Al, Sc-codoped ZnO /Al-doped ZnO and Al-doped ZnO / Al,Sc -
codoped ZnO 單層鍍膜與複層鍍膜的結構特性研究 130
8.1薄膜之X—光繞射(X-ray diffraction, XRD) 130
8.2薄膜微結構之穿透式電子顯微(TEM)鏡觀察 133
8.3 薄膜光學特性分析 134
8.4薄膜導電性質分析 137
8.5 XPS 分析 138
8.6結論 140
第九章 總結論 141
參考文獻 143
參考文獻 [1] P.L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. hite, A.P. Andrews,T.C. Lim, M.E. Motamedi, IEEE Trans. Electron Devices 29 (1982) 27.
[2] E.S. Kim, R.S. Muller, IEEE Electron. Device Lett. 8 (1987) 467.
[3] K.M. Lakin, J.S. Wang, Appl. Phys. Lett. 38 (1981) 125.
[4] D. Redfield, Appl. Phys. Lett. 25(11) (1974) 634.
[5] N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Materials Science in Semiconductor Processing 2 (1999) 247.
[6] T. Mitsuyu , S. Ono , K. Wasa . J Appl Phys. 51(5) (1980) 2464.
[7] J. Koike , H. Tanaka , H. leki, Jpn J Appl Phys. 34 (1995) 2678.
[8] V.G. Davydov , T.D. Rostova, V.V. Zakharov, Yu.A. Filatov, V.I. Yelagin, Materials Science and Engineering A280 (2000) 30–36.
[9] L.K. Lamikov and G.V. Samsonov, Soviet Non-Ferrous Metals Res. (USSR) (1964) 9, 79.
[10] V. Ocenasek and M. Slamova, Mater Characterization , Vol. 47, (2001), pp. 157-162
[11] D. N. Seilman, E. A. Marquis and D.C.Dunand, Acta Materialia Vo.50 (2002), pp.4021-4035.
[12] T. Minami, H. Nanto and S. Takata,Thin Solid Films, Vol. 124, (1985), pp.43-47
[13] S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films 434 (2003) 14–19
[14] C.A. Huang,K.C. Li,G.C. Tu, Electrochimica Acta, Vol.48, (2003), pp. 3599 -3605
[15] T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films, Vol.366, (2000), pp. 63-68
[16] T. Minami, S. Suzuki, T. Miyata, Thin Solid Films 398 (2001) 53–58
[17] J. Hinze and K. E. Ellmer, J.Appl. Phys. 88 (2000) 2443
[18] J.A. Thornton, D. W. Hoffman, Thin Solid Films 171 (1989) 5-31.
[19] D. S. Rickerby, J. Vac. Sci. Technol. A4 (1986) 2809.
[20] K. Tominaga, T. Murayama, Ichiro Mori, Thin Solid Films 386( 2001)
267- 270
[21] T. Miyata, S. Suzuki, M. Ishii, T. Minam, Thin Solid Films 411 (2002) 76–81
[22] T. Minami, M. Yamazaki, T. Miyata, Y. Kobayashi, T. Shirai, Thin Solid Films 411 (2002) 161–165
[23] I. Sakaguchi, D.Park, Y. Takata, S. Hishita, N. Ohashi, H. Haneda, T. Mitsuhashi, Nuclear Instruments and Methods in Physics Research B 206 (2003) 153–156
[24] J.B. Lee , H.J. Lee , S.H. Seo , J.S. Park, Thin Solid Films 398 –399 (2001) 641–646
[25] N.A. Theodoropoulou, A.F. Hebard, D.P. Norton, J.D. Budai,L.A. Boatner, J.S. Lee, Z.G. Khim, Y.D. Park, M.E. Overberg, S.J. Pearton, R.G. Wilson, Solid-State Electronics 47 (2003) 2231–2235
[26] G.A. Mohamed, E.M. Mohamed, Physica B 308–310 (2001) 949–953
[27] U. Pala,, E. A. Almanzaa, O. V. Cuchilloa, N. Koshizakib, T. Sasakib, S. Terauchi, Solar Energy Materials & Solar Cells 70 (2001) 363–368
[28] http://liuyifeng.nease.net,化學視窗.
[29] Y. Igasaki and H. Aito, Thin Solid Films, Vol.199, (1991), pp.223-230.
[30] T. Schuler, M. A. Aegerter, Thin Solid Films, Vol.351, (1999), pp. 125-131.
[31] H. L. Hartnagel, A. K. Jain and C. Jagadish, published by Institute of Physics Publication, (1995), p.17.
[32] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.1 (1969) 96.
[33] I. Safi, R.P. Howson, Thin Solid Films 343-344 (1999) 115.
[34] J. Ma, J. Feng, Thin Solid Films 279 (1996) 213.
[35] S. Zafar, F. Ferekides, D. L. Morel, J. Vac. Sci. Technol. A 13 (4) (1995) p.2177.
[36] I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F.Fenske,
W. Fuhs, Thin Solid Films 330 (1998) 108.
[37] J.C. Lin , K.C. Peng, H.L. Liao, S.L. Lee, Thin Solid Films 516 (2008)
5349–5354
[38] T. Minami, H. Sonohara, T. Kakumu, S. Takata, Jpn. J. Appl.Phys. 34(1995) vL971.
[39] T. Minami, T. Kakumu, K. Shimokawa, S. Takata, Thin Solid Films 317(1998) p.318.
[40]張榮芳,”RF反應磁控濺射製備透明導電ZnO:Al薄膜之研究”,國立成功大學材料科學及工程研究所碩士論文,(1997)
[41]蔡濱祥,”直流反應式磁控濺鍍ZnO:Al薄膜之特性研究”, 國立成功大學材料科學及工程研究所碩士論文,(2000)
[42]林素霞,”氧化鋅薄膜的特性改良及應用之研究”, 國立成功大學材料科學及工程研究所博士論文,(2003)
[43] B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
[44] H. Xiao,半導體製程技術導論, 歐亞書局,92年
[45] D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, 1991.
[46] S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982.
[47] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films, 102 (1983) 1.
[48] H.W. Lee, S.P. Lau,, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay , Journal of Crystal Growth 268 (2004) pp. 596–601
[49] W. Tang, D. C. Cameron, Thin Solid Films 238 (1994) 83.
[50] G. Gordillo and C. Calderón, Solar Energy Materials &Solar Cell 69
(2001)251.
[51] A. S. Reddy, G. V. Rao, S. Uthanna, P. S. Reddy, Phys. ,B 370 (2005)29
[52] J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9 (1976) 1002
[53] B.D. Cullity, Elements of X-ray Diffractions, Addison-Wesley, Reading, MA, 1978, p. 102
[54] E. Burstein, Phys. Rev.,93(1954) p.632-633.
[55] T. S. Moss, Phys. Soc. London Sect. B, 67(1954) p.775-782.
[56] W. Heitmann, Appl. Opt., 10(12), pp.2685-2689,1971.
[57] J. R. Sites, P. Gilstrap, and R. Rujkorakarn, Opt. Eng., 22(4), pp.447-449, 1983.
[58] J. R. McNeil, A. C. Barron, S. R. Wilson, and W. C. Herrmann, Jr.,
Appl .Opt., 23(4),552-559(1984).
[59] 黃文雄,” 製程參數對薄膜應力影響之研究”,國立中央大學光電科學研究所碩士論文,(2001)
[60] J. D. Wilcock, ”Stress in thin film”, Ph. D. Dissertation, Electrical Engineering Department, Imperial Collage, London University, London, 1967.
[61] R. W. Hoffman, Thin Solid Film, 34, pp. 185-190, 1976.
[62] F. M. Heurle, metallurgical Transactions, 1, pp.725-732, 1970.
[63] Y.Morinaga, K. Sakuragi, N. Fujimura, T. Ito, Journal of Crystal Growth 174(1997), pp.691-695
[64] W. Hirschwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hofmann, S. Kregs, R. Littbarski, G. Neumann, M. Grunze and D. M. Kolb, Materials Science (1981) North-Holland Publ. Co. Amsterdam.
[65] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito,J. Cryst. Growth 130 (1993) 269
[66] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of
X – ray photoelectron spectroscopy. A reference book of standard
spectra for identification and interpretation of XPS data. Edited by J. Chastain, R.C. King, Physical Electronics Inc., 1995.
[67] M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S.269 Wen, Appl. Surf. Sci. 158 (2000) 134.
[68] 盧俊傑,”鈧含量與熱處理對Al-Sc薄膜為結構與表面形態之影響”,國立中央大學機械工程工程研究所碩士論文,(2004)
[69] J.E.Huheey, Inorganic Chemistry, 3th Ed., 1983, HARPER & ROW, 146~148.
[70] S K Habib, A Rizk and I A Mousa, Vacuum, 49(1998) 2, pp.153 -160.
[71] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoçd , Journal of applied physics 98, 041301,(2005)
[72] T. L. Tansley, D. F. Neely, Thin Solid Films, 121 (1984) 95.
[73] A. KloÈppel,W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube , Thin Solid Films 365 (2000) 139-146
[74] D.R. Sahu, Shin-Yuan Lin, Jow-Lay Huang, Solar Energy Materials & Solar Cells 91 (2007) 851–855
[75] D.R. Sahu , Jow-Lay Huang, Applied Surface Science 253 (2006) 827–832
[76] T.C. Lin, S.C. Chang, C.F. Chiu, Materials Science and Engineering B 129 (2006) 39–42
[77] F. Fotsa Ngaffo, A.P. Caricato, M. Fernandez, M. Martino, F. Romano, Applied Surface Science 253 (2007) 650–651
[78] D.R. Sahu , J.L. Huang, Materials Science and Engineering B 130 (2006) 295–299
指導教授 林景崎(Jing-Chie Lin) 審核日期 2009-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明