博碩士論文 92344004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.235.29.190
姓名 江衍徹(Yen-che Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜
(Low fouling ultrafiltration and nanofiltration membranes fabricated by zwitterionic surface modification)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用
★ 以三聚氰氯為單體的抗氯型奈米過濾膜★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討
★ 蛋白質特定方向固定化-以α-amylase為例★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究
★ 位向性固定化葡萄糖氧化酶之新方法★ Indolicidin 及其類似物與微脂粒交互作用之焓測 量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於一個理想的蛋白質超過濾薄膜而言,薄膜本身需要具有良好機械性質及很低的生物結垢特性。疏水性PVDF薄膜本身擁有良好抗化、抗熱性及機械強度,因此常被使用在各式薄膜過濾材料選擇,可是對於運用在食品或製藥程序上,薄膜表面之生物結垢(biofouling)往往是個嚴重且麻煩的問題。有鑑於此,本研究嘗試以臭氧處理活化PVDF薄膜,然後以原子自由基轉移聚合方法控制薄膜表面雙離子聚合物(polySBMA)之接枝度,藉以增加疏水薄膜的親水性並降低其生物結垢性質。實驗中,我們選擇牛血清蛋白(Bovine Serum Albumin, BSA )及較為黏滯性的γ-globulin當作標的蛋白,以靜態吸附以及三次循環過濾測試證實PVDF-g-PSBMA薄膜具有優越之抗蛋白吸附性質。
另外對於高通透量之奈米過濾膜製備,本實驗利用樹枝狀(hyperbranch)構造之水相高分子polyethyleneimine(PEI)與油相單體trimesoyl chloride(TMC)、terephthaloyl chloride(TPC)進行界面聚合反應,其水相分子的胺基(-NH2)與油相單體的醯氯基(O=C-Cl)所形成高緻密的醯胺鍵網狀結構,將可阻擋一些分子量大於100的小分子,因此水相PEI分子量、濃度、與界面聚合反應時間都將會影響選擇層的性質,所以這些變因將是探討重點,另外對於經四級胺化改質後薄膜表面帶電量與環境pH值變化造成薄膜電性轉換,我們也做進一步分析。最後PEI系列薄膜與另外兩種ethylenediamine(EDA)/TMC、diethylenetriamine(DETA)/TMC奈米過濾膜將互相比較單鹽截留行為,結果發現PEI/TPC具有與EDA/TMC薄膜相似大小孔徑,但鹽類截留率與純水permeability卻都高於EDA/TMC薄膜;另外PEI/TMC薄膜約為1.5nm,此孔洞遠大於EDA/TMC (rp = 0.43nm)薄膜,但卻仍有比較高的NaCl截留率。此現象有可能是PEI特殊的樹枝狀結構造成奈米過濾膜具有高截留性與高通透量主要原因。
最後若是奈米過濾膜應用於廢水處理或生物反應器系統,其薄膜因微生物生物堵塞(biofouling)往往是一個嚴重的問題,為了解決降低biofouling問題,本研究嘗試創造正負電性相當之雙離子性薄膜,並以蛋白質吸附實驗及革蘭氏陰、陽細菌貼附實驗證明biofouling現象已大幅降低。實驗中選用自製的DETA/TMC奈米過濾膜並利用iodopropionic acid (IPA)進行表面N-alkylation反應,其薄膜結構中三級胺官能基部分,隨後再以iodomethane進行四級胺化改質,並調控薄膜表面正負電荷比例,最後以元素分析儀(XPS)與界達電位量測證明膜面改質成功。在蛋白質吸附實驗部分,我們選擇BSA( pI =4.9 )與Lysozyme( pI=10.5 )對薄膜進行吸附測試,結果只有表面接近電中性的QDETA-IPA25%薄膜對兩種蛋白都具有抗吸附效果,而在革蘭氏陰、陽細菌貼附實驗中,除了負電性薄膜DETA-IPA5%與DETA-IPA25%具有良好抗吸附外,電中性薄膜QDETA-IPA25%同樣也有降低細菌吸附表現,我們認為雙離子QDETA-IPA25%薄膜將來有機會可以運用於生物反應器系統。
摘要(英) In addition to sharp molecular weight cut and high flux an ideal ultrafiltration (UF) membrane requires high mechanical strength, good chemical resistance as well as anti-fouling characteristics. Poly(vinylidene fluroride) (PVDF) is often chosen to prepare UF membranes owing to its good mechanical properties and excellent chemical resistance. To retain the merits of PVDF UF membrane properties, we try to graft antifouling poly sulfobetaine onto the surface of the PVDF UF membrane. The zwitterionic sulfobetaine methacrylate (SBMA) was grafted on the surface of PVDF membrane via ozone surface activation and surface-initiated atom transfer radical polymerization (ATRP). The steady adsorption of bovine serum albumin (BSA) and γ-globulin were performed to test the antifouling character after SBMA grafting. Hardly any albumin adsorption was found as the grafting density exceeded 0.4 mg/cm2 of polySBMA. The adsorption of?γ-globulin was also greatly reduced. To investigate whether the method, ozone surface activation plus ATRP, was able to graft SBMA inside the pores of the membrane cyclic filtration tests were performed and the UF membrane of wider pore size was used. The cyclic filtration test for BSA yielded an extremely low irreversible membrane fouling ratio (Rir) of 13% in the first cycle and apparently no irreversible fouling was found in the second cycle. A more stringent test is carried out by passing the γ-globulin solution. It was found that the virgin PVDF membrane was continuously fouled by γ-globulin after 3 cyclic operations, but the polySBMA modified membrane had a Rir value as low as 4.7% in the third cycle. The results indicated that the surface modification via ozone surface activation and ATRP could actually penetrate into the pores of an ultrafiltration membrane. The polySBMA grafted PVDF membrane could effectively resist plasma protein adsorption and exhibited an extremely low biofouling characteristic during filtration.
Four nanofiltration membranes, two negatively and two positively charged, were fabricated by interfacial polymerization. Three different amines, ethylendiamine (EDA), diethylentriamine (DETA), and hyperbranched polyethylenimine (PEI) were selected to react with two acyl chlorides, trimesoyl chloride (TMC) and terephthaloyl chloride. The two membranes containing hyperbranched PEI, PEI/TPC and PEI/TMC, are positively charged at the operational pH. But the other two membranes, EDA/TMC and DETA/TMC, are negatively charged. It is found that the two PEI membranes own special rejection characters during nanofiltration. The PEI/TPC membrane has a similar pore size to the EDA/TMC membrane but owns simultaneously the higher salt rejection and permeation flux. The PEI/TMC has a pore size as big as 1.5 nm and still has a higher NaCl rejection than the EDA/TMC membrane of which the pore size is as small as 0.43 nm. We consider that the special rejection characters are derived from the special structure of PEI. The hyperbranched structure allows some of the charged amine groups drifting inside the pores and interacting with the ions in the pathway. The drifting amines increase salt rejection but have little effect on water permeation. It imply that a high flux and high rejection membrane for desalting can be obtained by attaching freely rotating charged groups.
Membrane fouling is a fatal problem in membrane filtration operation. Biofouling is especially notorious. In order to reduce the biofouling on a nanofiltration membrane, we tried to create a hydrophilic surface fixed with balanced positive and negative charges. Nanofiltration membranes were fabricated by interfacial polymerization of Trimesic acid Trichloride (TMC) and Diethylenetriamine (DETA). The surfaces were then modified via N-alkylation of the secondary amine with iodopropionic acid (IPA). The resulting tertiary amines were further quaternized by iodomethane. Negatively charged Bovine Serum Albumin (BSA) and positively charged lysozyme (LYS) were used to test the protein fouling probability. The membranes of various degree of N-alkylation or quarternation exhibited different levels of protein adsorption. The DETA/TMC nanofiltration membrane adsorbed moderate amount of both BSA and LYS. After reacting with iodopropionic acid the BSA adsorption greatly decreased but the adsorption of LYS raised. After quarternization the membrane moderately modified by iodopropionic acid adsorbed little LYS but large amount of BSA. Only the membrane highly modified by IPA and moderately quarternized by iodomethane exhibits excellent resistant against both positively and negatively charged proteins. The protein resistant neutral membrane(QDETA-IPA25%) also showed reduced adsorption of E. coli and S. epidermidis. The results indicated the importance of charge balance on the membrane surface in view of protein fouling and bacteria adhesion.
關鍵字(中) ★ 奈米過濾膜
★ 生物結垢
★ 雙離子聚合物
關鍵字(英) ★ nanofiltration
★ biofouling
★ zwitterionic
論文目次 總目錄
中文摘要 --------------------------------------------- I
英文摘要 --------------------------------------------- III
總目錄 ----------------------------------------------- VI
圖目錄 ------------------------------------------------IX
表目錄 ----------------------------------------------- XII
第一章 緒論 ------------------------------------------ 1
1-1薄膜發展歷史 -------------------------------------- 1
1-2超過濾薄膜簡介 ------------------------------------ 2
1-3奈米過濾膜簡介 ----------------------------------- 5
第二章 文獻回顧 -------------------------------------- 7
2-1低蛋白吸附之超過濾薄膜 ---------------------------- 7
2-1.1 聚氟乙烯(poly(vinylidene fluoride))簡介 -------- 7
2-1.2 高分子薄膜親水化改質 ----------------------------7
2-1.3 文獻上常使用的兩種antifouling材料 ---------------12
2-1.4研究動機 ---------------------------------------- 17
2-1.5研究目的 ---------------------------------------- 17
2-2 奈米過濾薄膜 ------------------------------------- 18
2-2.1 RO薄膜與NF薄膜發展歷史 --------------------------18
2-2.2 薄膜製備方法 ----------------------------------- 20
2-2.3 奈米過濾膜製備方法 ----------------------------- 21
2-2.4 影響界面聚合法主要因素 ------------------------- 28
2-2.5 奈米過濾膜之分離機制 ----------------------------31
2-2.6 研究動機與目的 ----------------------------------34
2-3 抗菌貼附之奈米過濾膜 ------------------------------35
2-3.1 生物膜(biofilm) --------------------------------35
2-3.2 高分子材料與細菌間的相互作用 --------------------36
2-3.3 薄膜生物反應槽 ----------------------------------38
2-3.4 研究動機 ----------------------------------------39
2-3.5 研究目的 ----------------------------------------39
第三章 實驗藥品、設備與方法 ---------------------------40
3-1 實驗藥品 ------------------------------------------40
3-2 實驗設備 ------------------------------------------42
3-3 實驗方法 ------------------------------------------44
3-3.1低蛋白吸附之超過濾薄膜 ---------------------------44
3-3.2 奈米過濾薄膜 ------------------------------------51
3-3.3 抗細菌貼附之奈米過濾膜 --------------------------56
第四章 低蛋白吸附之超過濾薄膜 -------------------------59
4-1 臭氧處理對PVDF薄膜表面活化影響 --------------------60
4-1.1 臭氧處理時間之影響與薄膜表面過氧基 ( peroxide ) 量測 ----------------------------------------------------60
4-2 SBMA單體濃度對PVDF薄膜表面接枝量之影響 -----------------------------------------------------------------------61
4-2.1 元素分析儀與紅外線光譜對薄膜表面成分分析 -------------------------------------------------------------------61
4-2.2 薄膜表面poly(SBMA)接枝量對親疏水接觸角影響 -----------------------------------------------------------------63
4-2.3 薄膜表面型態 -----------------------------------64
4-3 薄膜表面蛋白質吸附量之量測-------------------------65
4-3-1 薄膜對BSA與γ-globulin之靜態吸附 -----------------65
4-4 蛋白質循環過濾 (Cyclic filtration) 測試 -----------66
4-4-1 BSA溶液第一循環過濾結果分析 ---------------------66
4-4-2 BSA與γ-globulin溶液循環過濾結果分析 -------------69
4-5 結論 ----------------------------------------------75
第五章 高通量的奈米過濾膜 ----------------------------76
5-1 超過濾PAN基材膜之製備------------------------------78
5-2 界面聚合法製備聚醯胺奈米過濾膜---------------------79
5-2-1界面聚合時間對薄膜過濾性質之影響------------------79
5-2-2 水相PEI分子量與濃度對薄膜過濾之影響--------------80
5-3 奈米過濾膜之薄膜型態、孔洞大小與界達電位量測-------81
5-3-1 薄膜表面與截面型態 ------------------------------81
5-3-2 薄膜表面界達電位量測 ----------------------------83
5-3-3 薄膜孔洞大小(MWCOs)量測 -------------------------85
5-3-4 以Hagen Poiseuille equation推估薄膜孔洞大小------87
5-4 奈米過濾膜對單鹽溶液過濾機制討論 ------------------89
5-4-1 PEI薄膜特殊的單鹽截留行為------------------------90
5-4-2 PEI系列薄膜對單鹽特殊截留行為之討論--------------93
5-4-3 PEI薄膜之四級胺化(Quaternization)對鹽類截留影響--95
5-4-4 溶液pH值對奈米過濾膜鹽類截留之影響---------------98
5-5 結論 ----------------------------------------------104
第六章 抗細菌貼附之奈米過濾薄膜-----------------------105
6-1 DETA/TMC奈米過濾膜之製備及鹽類截留表現-------------106
6-2 DETA奈米過濾薄膜之N-alkylation反應與元素分析測定(XPS)---------------------------------------------------------107
6-3 DETA-IPA奈米過濾薄膜之quaterization反應與元素分析測定
(XPS) -------------------------------------------------109
6-4 薄膜界達電量測 ------------------------------------111
6-5 BSA與Lysozyme之吸附測試 ---------------------------112
6-6 薄膜對革蘭氏菌貼附測試 ----------------------------114
6-7 結論-----------------------------------------------124
Figure
Fig. 1-1 Dead end and cross flow filtration -----------4
Fig. 2-1 Atom transfer radical polymerization(ATRP) reaction mechanism-------------------------------------11
Fig. 2-2 2-methacryloyloxyethylphosphorylcholine(MPC) monomer structure -------------------------------------15
Fig. 2-3 (a) DPPH structure (b) similar DPPH structure -----------------------------------------------------------15
Fig. 2-4 SBMA and CBMA structure ----------------------16
Fig. 2-5 The concept of pore-filling electrolyte membrane --------------------------------------------------------22
Fig. 2-6 The concept of interfacial polymerization membrane ----------------------------------------------26
Fig. 2-7 Biofilm formation step -----------------------36
Fig. 3-1 Preparation of substrate membrane ------------44
Fig. 3-2 The calibration of DPPH ----------------------45
Fig. 3-3 Schematic illustration of the preparation process of the PVDF-g-polySBMA UF membranes via surface copolymerization --------------------------------------47
Fig. 3-4 Scheme of HP4750 stirred cells ---------------50
Fig. 3-5 Scheme of cyclic filtration ------------------50
Fig. 3-6 The scheme of molecular/Pro stirred cell -----51
Fig. 3-7 The scheme of the streaming potential operation system ------------------------------------------------53
Fig. 4-1 Effect of ozone treatment on the surface density of peroxide -------------------------------------------60
Fig. 4-2 XPS C1S core-level spectra of (a) the virgin PVDF UF membrane, and (b) the PVDF-g-PBIEA UF membrane; High resolution XPS spectra of Br3d region of (c) the PVDF-g-PBIEA UF membrane -------------------------------------62
Fig. 4-3 FT-IR spectra of (a) the virgin PVDF, (b) the PVDF-g-PBIEA, and the PVDF-g-PSBMA membranes with PSBMA grafting density of (c) 0.18 mg/cm2 and (d) 0.4 mg/cm2 -----------------------------------------------------------62
Fig. 4-4 Effect of SBMA content in the reaction solution on the surface grafting density and water contact angle of the prepared PVDF UF membranes ------------------------63
Fig. 4-5 SEM photographs of surface morphology of the prepared PVDF UF membranes with PSBMA grafting amount of (a) 0.0 mg/cm2 prepared by the wet phase-inversion process, (b) 0.0 mg/cm2 with ozone pretreatment for 30 min at 25oC, (c) 0.18 mg/cm2, and (d) 0.4 mg/cm2. All images with magnification of 10000?. ------------------------65
Fig. 4-6 BSA and ?-globulin adsorption amount on the surface of the prepared PVDF UF membranes as a function of PSBMA grafting density. All membranes were incubated in 5mL of 1.0 mg/mL protein in PBS solution for 24 h at 37 oC. ---------------------------------------------------66 Fig. 4-7 Time-dependent flux of the PVDF UF membranes grafted with different amounts of PSBMA. Ultrafiltration process was operated at a pressure of 1.0 atm, a temperature of 25°C and a stirring speed of 300 rpm. The BSA concentration is 1.0 mg/mL in PBS solution --------68
Fig. 4-8 Effect of PSBMA grafting density on flux recovery ratio (FRw,1) and fouling ratio (R: Rt,1, Rir,1, and Rr,1) in the first cycle of the filtration test using BSA as the tested protein.----------------------------------------69
Fig. 4-9. Time-dependent of (a) recycling flux and (b) rejection ratio for the virgin PVDF UF membrane and PVDF-g-PSBMA membrane grafted with 0.4 mg/cm2 PSBMA polymers, respectively. All process was operated with three cycles of BSA solution ultrafiltration in the room temperature.----------------------------------------------------------71
Fig. 4-10 The comparison of water flux recovery during the ith cycle between the virgin PVDF UF membrane and PVDF-g-PSBMA membrane grafted with 0.4 mg/cm2 PSBMA for (a) BSA solution and (b) γ-globulin solution.-----------------------------------------------------------------------------72
Fig. 4-11 Time-dependent of (a) recycling flux and (b) rejection ratio for the virgin PVDF UF membrane and PVDF-g-PSBMA membrane grafted with 0.4 mg/cm2 PSBMA, respectively. All process was operated with three cycles ofγ-globulin solution ultrafiltration in the room temperature.-------------------------------------------74
Fig. 5-1. Chemical structures of monomers and polymer.--77
Fig. 5-2. The effect of interfacial polymerization reaction time on permeation and rejection of PEI/TMC membrane ( MgSO4 = 1000ppm) --------------------------------------79
Fig. 5-3. Effect of molecular weight and polymer concentration on permeability and MgSO4 rejection performance of PEI membranes. -------------------------80
Fig. 5-4. Surface morphology and the cross-section of top layer of membranes (a)-(b) PEI/TMC, IP time = 120s. (c) PEI/TMC, IP time = 30s. (d)-(e) PEI/TPC, IP time = 120s.----------------------------------------------------------82
Fig. 5-5. Zeta potential of membranes at various pH values ------------------------------------------------------- 84
Fig. 5-6. MWCO measurement of the four different kinds NF membranes.-------------------------------------------- 86
Fig. 5-7. Stokes radii of the PEGs of differernt molecular weights ---------------------------------------------- 86
Fig. 5-8. Water permeability of the four different kinds NF membranes.-------------------------------------------- 88
Fig. 5-9. The salt rejection and filtrate permeability of membranes made of hyperbranched polyethylenimine.----------------------------------------------------------------92
Fig. 5-10. Possible network structure of PEI/TPC nanofiltration membranes.------------------------------94
Fig. 5-11.The influence of quaterization times (QPEI/TMC membrane, feed solution:MgSO4)------------------------96
Fig. 5-12. The surface Zeta potential of the virgin (PEI/TMC , PEI/TPC) and quaternization (QPEI/TMC , QPEI/TPC) membrane measurement as a function of PH ----96
Fig. 5-13. The performance comparison of virgin (PEI/TMC , PEI/TPC) and quaternization (QPEI/TMC , QPEI/TPC) with various salt solution.------------------97
Fig. 5-14 Effects of pH on the salt rejection of DETA/TMC membrane: MgSO4 rejection (?), MgCl2 rejection (●), Na2SO4 rejection (▲), NaCl rejection (▼).------------99
Fig. 5-15. Effects of pH on the salt rejection of DETA/TMC membrane: MgSO4 rejection (?), MgCl2 rejection (●), Na2SO4 rejection (▲), NaCl rejection (▼).---------------------------------------100
Fig. 5-16 Effects of pH on the salt rejection of PEI/TMC membrane: MgSO4 rejection (?), MgCl2 rejection (●), Na2SO4 rejection (▲), NaCl rejection (▼).-----------101
Fig. 5-17. Effects of pH on the salt rejection of PEI/TPC membrane: MgSO4 rejection (?), MgCl2 rejection (●), Na2SO4 rejection (▲), NaCl rejection (▼).-----102
Fig. 5-18. Effect of pH on the water permeability of four different kinds of NF membranes.--------------103
Fig. 6-1. The surface and cross section morphology of DETA/TMC membrane ------------------------------------106
Fig. 6-3. Schematic illustration of N-alkylation of DETA membrane ------------------ ---------------------------108
Fig. 6-4. XPS C1s core-level spectra of (a) the virgin DETA nanofiltration membrane (b) the DETA-IPA5% nanofiltration membrane (c) the DETA-IPA25% nanofiltration membrane.-108
Fig. 6-5. Schematic illustration of quaterization of DETA membrane----------------------------------------------110
Fig. 6-6. N 1s core-level spectra of (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25% ----------------------------------------------------------110
Fig. 6-7. Zeta potential of membranes at various pH values -------------------------------------------------------111
Fig. 6-8 Growth curves of S. epidermidis and E. coli ------------------------------------------------------------116
Fig. 6-9. Adhesion of S. epidermidis about 10min. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25% -----------------------------------------------117
Fig. 6-10. Adhesion of E. coli about 10min. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------117
Fig. 6-11. Adhesion of S. epidermidis about 3h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------118
Fig. 6-12 Adhesion of S. epidermidis about 24h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25% -----------------------------------------------118
Fig. 6-13. Adhesion of S. epidermidis about 3h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------119
Fig. 6-14. Adhesion of S. epidermidis about 24h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25% -------------------------------------119
Fig. 6-15. Adhesion of E. coli about 3h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25% -----------------------------------------------120
Fig. 6-16. Adhesion of E. coli about 24h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------------120
Fig. 6-17. Adhesion of E. coli about 3h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------------121
Fig. 6-18. Adhesion of E. coli about 24h. (a) DETA (b) DETA-IPA5% (c) DETA-IPA25% (d) QDETA-IPA5% (e) QDETA-IPA25%------------------------------------------------121
Fig. 6-19. The relative amount of S. epidermidis adhesion on various membranes-------------------------122
Fig. 6-20. The relative amount of E. coli adhesion on various membranes----------------------------------123
Table
Table 1-1 The membrane materials comparison------------4
Table 5-1 Pore size estimation of the synthesized membranes --------------------------------------------89
Table 5-2 Pore size and rejection orders of several commercially available membranes.---------------------93
Table 6-1 Membrane characterization and protein adsorption amount------------------------------------------------113
參考文獻 第七章 參考文獻
1. Michaels, A.S., New separation technique for the CPI. Chemical Engineering Proggress, 1968, vol.64(12), 31-35.
2. Matthiasson, E., Sivik, B., Concentration polarization and fouling. Desalination, 1980, vol.35, 59-103.
3. Aimar, P., Howell, J.A., Clifton, M.J., Sanchez, V., Concentration polarization build-up in hollow fibers : A method of measurement and its modeling in ultrafiltration. Journal of Membrane Science, 1991, vol.59, 81-99.
4. Chang, J. S., Tsai, L.J., and Vigneswaran, S., “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration”. Water Science and Technology, 1996, vol.34, 133-140.
5. Munir, C., “Ultrafiltration and microfiltration handbook”. Technomic, Lancaster (1998).
6. Dohany, J.E., and Robb, L.E., Kirk-Othmer (Ed.). 3rd ed. Vol. Polyvinylidene fluoride. 1980: Wiley. 64–74.
7. Bottino, A., Capannelli, G., and Comite, A. Novel porous poly (vinylidene fluoride) membranes for membrane distillation. Desalination, 2005, vol.183(1-3), 375-382.
8. Srisurichan, S., Jiraratananon, R., and Fane, A.G., Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, vol.277, 186-194.
9. Sun, H.X., et al., A study of human γ-globulin adsorption capacity of PVDF hollow fiber affinity membranes containing different amino acid ligands. Separation Purification Technology, 2006, vol.48(3), 215-222.
10. Gupta, Y., Hellgardt, K., and Wakeman, R.J., Enhanced permeability of polyaniline based nano-membranes for gas separation. Journal of Membrane Science, 2006, vol.282, 60-70.
11. Souzy, R., and Ameduri, B., Functional fluoropolymers for fuel cell membranes. Progress in Polymer Science, 2005, vol.30, 644-652.
12. Soresi, B., et al., PVDF and P(VDF-HFP)-based proton exchange membranes. Solid State Ionics, 2004, vol.166, 383-392.
13. Jian, K., and Pintauro, P.N., Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. Journal of Membrane Science, 1997, vol.135, 41-53.
14. Chang, C.L., and Chang, M.S., Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions. Journal of Membrane Science, 2004, vol.238, 117-122.
15. Jim, K.J., et al., Fouling mechanisms of membranes during protein ultrafiltration. Journal of Membrane Science, 1992, vol.68, 79-91.
16. Belfort, G., Davis, R.H., and Zydney, A.L., The behavior of the suspensions and macromolecule solutions in crossflow microfiltration. Journal of Membrane Science, 1994, vol.96, 1-58.
17. Chan, R., and Chen, V., Characterization of protein fouling on membranes: opportunities and challenges. Journal of Membrane Science, 2004, vol.242, 169-188.
18. Kelly, S.T., and Zydney, A.L., Mechanisms for BSA fouling during microfiltration. Journal of Membrane Science, 1995, vol.107, 115-127.
19. Mueller, J., and Davis, R.H., Protein fouling of surface-modified polymeric microfiltration membranes. Journal of Membrane Science, 1996, vol.116, 47-60.
20. Lebrun, F., Bazus, A., Dhulster, P., Guillochon, D., Influence of molecular interactions on ultrafiltration of a bovine hemoglobin hydrolysate with an organic membrane. Journal of Membrane Science, 1998, vol.146, 113-124.
21. Scott, T.J., William, M.D., Hindered convection of proteins in agarous gels. Journal of Membrane Science, 1998, vol.146, 113-124.
22. Hester, J.F., Mayes, A.M., Design and performance of foul-resistant poly(vinylidene fluoride)membranes prepared in a single-step by surface segregation. Journal of Membrane Science, 2002, vol.202, 119–135.
23. Xiaole, M., Yanlei, S., Qiang, S., Yanqiang, W., Zhongyi, J., Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer. Journal of Membrane Science, 2007, vol.292, 116-124.
24. Green, R.J., Tasker, S., Davies, J., Davies, M.C., Roberts, C.J., and Tendler, S.J.B., Adsorption of PEO-PPO-PEO Triblock Copolymers at the Solid/Liquid Interface: A Surface Plasmon Resonance Study. Langmuir, 1997, vol.13, 6510-6515.
25. McGurk, S.L., Green, R.J., Giles, H.W.S., Martyn, C.D., Clive, J.R., Saul, J.B.T., and Philip, M.W., Molecular Interactions of Biomolecules with Surface-Engineered Interfaces Using Atomic Force Microscopy and Surface Plasmon Resonance. Langmuir, 1999, vol.15, 5136-5140.
26. Wang, P., Tan, K.L., Kang, E.T., Neoh, K.G., Synthesis, Characterization and anti-fouling properties of poly(ethylene glycol) grafted poly(vinylidene fluoride) copolymer membranes. Journal of Materials Chemistry, 2001, vol.11, 783-789.
27. Jing, Z., Jie, Y., Rui, L., Qiangguo, D., Wei Z., Preparation and properties of MPEG-grafted EAA membranes via thermally induced phase separation. Journal of Membrane Science, 2005, vol.267, 90-98.
28. Chapman, B., Glow Discharge Process. 1980: Wiley.
29. Grill, A., Cold Plasma in Materials Fabrication. 1994: IEEE.
30. 杜振源, 聚四氟乙烯電漿改質膜之滲透蒸發與黏著性質之研究, 中原大學化工所博士論文,2005。
31. Kim, H., and Kim, S.S., Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. Journal of Membrane Science, 2006. vol.286(1-2), 193-201.
32. Singh, N., et al., Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. Journal of Membrane Science, 2008, vol.311(1-2), 225-234.
33. Wavhal, D.S., Fisher, E.R., Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. Journal of Membrane Science. 2002, vol.209, 255-269.
34. Wavhal, D.S., and Fisher, E.R., Membrane Surface Modification by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling. Langmuir, 2003, 19, 79-85.
35. Kou, R. Q., Xu, Z. K., Deng, H. T., Liu, Z. M., Seta. P., Xu. Y., Surface Modification of Microporous Polypropylene Membranes by Plasma-Induced Graft Polymerization of r-Allyl Glucoside. Langmuir, 2003, vol.19, 6869-6875.
36. Kita, H., Inada, T., Tanaka, K., Okamoto, K., Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone-containing polyimide, Journal of Membrane Science, 1994, vol.87, 139-147.
37. Pieracci, J., Crivell, J.V., Belfort, G., Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. Journal of Membrane Science, 1999, vol.156, 223-240.
38. Kaeselev, B., Pieracci, J., Belfort, G., Photoinduced grafting of ultrafiltration membranes: comparison of poly(ether sulfone) and poly(sulfone). Journal of Membrane Science, 2001, vol.194, 245-261.
39. Wang, Y., Kim, J.H., Choo, K.H., Lee, Y.S., Lee, C.H., Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000, vol.169, 269-276.
40. Ko, Y.G., Kim, Y.H., Park, K.D., Lee, H.J., Lee, W.K.,
Park, H.D., Kim, S.H., Lee, G.S., Ahn, D.J., Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001, vol.22, 2115-2123.
41. Tu, C.Y., Liu, Y.L., Lee, K.R., Lai, J.Y., Surface grafting polymerization and modification on poly(tetrafluoroethylene) films by means of ozone treatment. Polymer, 2005, vol.46, 6976-6985.
42. Ayres, L., et al., Elastin-based side-chain polymers synthesized by ATRP. Macromolecules, 2003, vol.36(16), 5967-5973.
43. Ma, Y.H., et al., Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules, 2003, vol.4(4), 864-868.
44. Li, X., Wei, X.L., and Husson, S.M., Thermodynamic studies on the adsorption of fibronectin adhesion-promoting peptide on nanothin films of poly(2-vinylpyridine) by SPR. Biomacromolecules, 2004, vol.5(3), 869-876.
45. 許朝翔, 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制,碩士論文,國立中央大學化學工程與材料工程所,2007。
46. Caliceti, P., et al., Controlled Release of Proteins and Peptides from Hydrogels Synthesized by Gamma-Ray-Induced Polymerization. Farmaco, 1992, vol.47(3), 275-286.
47. Kulik, E.A., et al., Peroxide Generation and Decomposition on Polymer Surface. Journal of Polymer Science Part A-Polymer Chemistry, 1995, vol.33(2) 323-330.
48. Nie, F.Q., et al., Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer, 2004, vol.45(2), 399-407.
49. Sheu, M.S., Hoffman, A.S., and Feijen, J., A glow discharge treatment to immobilize poly(ethylene oxide) poly(propylene oxide) surfactants for wettable and nonfouling biomaterials. Journal of Adhesion Science and Technology, 1992, vol.6 995-1008.
50. Lens, J.P., et al., Immobilization of functionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surfaces by means of an argon plasma treatment. Journal of Biomaterials Science, 1997. vol.8, 963-972.
51. Lee, J.H., Jeong, B.J., andLee, H.B., Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. Journal of Biomedicial Materials Research Part A, 1997, vol.34 105-111.
52. Liu, Y., et al., Synthesis, characterization and electrochemical transport properties of the poly(ethyleneglycol)-grafted poly(vinylidenefluoride) nanoporous membranes. Reactive & Functional Polymers, 2001, vol.47(3), 201-213.
53. Wang, P., et al., Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science, 2002, vol.195(1), 103-114.
54. Chen, Y.W., et al., Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes. Macromolecules, 2003, vol.36(25), 9451-9457.
55. Chen, Y.W., et al., Atom transfer radical polymerization directly from poly(vinylidene fluoride): Surface and antifouling properties. Journal of Polymer Science Part a-Polymer Chemistry, 2006, vol.44(11), 3434-3443.
56. Liu, D.M., et al., Controlled grafting of polymer brushes on poly(vinylidene fluoride) films by surface-initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2006, vol.101(6), 3704-37
57. Vermette, P., Meagher, L., Interactions of phospholipid- and
poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003, vol.28, 153-198.
58. Georgiev, G.S., Karnenska, E.B., Vassileva, E.D., Kamenova, I.P., Georgieva, V.T., Iliev, S. B., Ivanov, I. A., Self - assembly ; antipolyelectrolyte effect; and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006, vol.7(4), 1329-1334.
59. Lewis, A.L., Phosphorylcholine-based polymers and their use in the
prevention of biofouling. Colloids and Surfaces B-Biointerfaces,
2000, vol.18(3-4), 261-275.
60. Feng, W., Zhu, S.P., Ishihara, K., Brash, J.L., Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface -initiated atom transfer radical polymerization. Langmuir, 2005, vol.21(13), 5980-5987.
61. Zhang, Z., Chao, T., Chen, S.F., Jiang, S.Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006, vol.22(24), 10072-10077.
62. Chang, Y., Chen, S.F., Zhang, Z., Jiang, S.Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006, 22(5), 2222-2226.
63. Zhang, Z., Chen, S.F., Chang, Y., Jiang, S.Y., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006, vol.110(22), 10799-10804.
64. Zhang, Z., Chen, S.F., Jiang, S.Y., Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006, vol.7(12), 3311-3315.
65. T. Wang, Wang, Y.Q., Su, Y.L., Jiang, Z.Y., Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. Journal of Membrane Science, 2006, vol.280, 343-350.
66. Sun, Q., Su, Y.L., Ma, X.L., Wang, Y.Q., Jiang, Z.Y., Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. Journal of Membrane Science, 2006, vol.285, 299-305.
67. Leob, S., Sourirajan, S., Sea Water Demineralization by Means of an Osmotic Membrane. Advances in chemistry Series Number 38 (1963).
68. Cadotte, J.E., Interfacially Synthesized Reverse Osmosis Membrane, U.S. Patent 4,277,344, July (1981).
69. Mulder, M., Basic Principles of membrane technology, Kluwer Academic Publishers, The Netherlands, (1996).
70. Kurumada, K.I., Structure generation in PTFE porous membranes inducesd byb the uniaxial and biaxial stretching operations. Journal of Membrane Science, 1998, vol.149, 51-57.
71. Kim, K.J., Chemical and electrical characterization of virgin and protein-fouled polycarbonate track-etched membranes by FTIR and streaming-potential measurements. Journal of Membrane Science, 1997, vol.134, 199-208.
72. Young, T.H., Wang, D.M., The effect of the second phase inversion on microstructures in phase inversion EVAL membranes, Journal of Membrane Science, 1998, vol.146, 169-178.
73. Childs, R.F., Mika, A.M., Pandey, A.K., Dickson, J.M., Nanofiltration using pore-filled membranes: effect of polyelectrolyte composition on performance. Separation and Purification Technology, 2001, 22-23, 507-517.
74. Childs, R.F., Formation of Pore-Filled Ion-Exchange Membranes with In Situ Crosslinking: Poly(vinylbenzyl ammonium salt)-Filled Membranes. Journal of Applied Polymer Science : Part A: Polymer Chemistry, 2001, Vol39, 807-820.
75. Zhou, J., Childs, R.F., Mika, A.M., Pore-filled nanofiltration membranes based on poly(2-acrylamido-2-methylpropanesulfonic acid) gels. Journal of Membrane Science, 2005, vol.254, 89-99.
76. Mohan, D., Preparation and performance of cellulose acetate– polyurethane blend membranes and their applications -II. Journal of Membrane Science, 2000, vol.169, 215-228.
77. Bowen, W.R., Polysulfone-sulfonated poly(ether ether) ketone blend membranes : systematic synthesis and characterization. Journal of Membrane Science, 2001, vol.181, 253-263.
78. Bowen, W.R., Manufacture and characterisation of polyetherimide/sulfonated poly(ether ether ketone) blend membranes. Journal of Membrane Science, 2005, vol.250, 1-10.
79. Chen, G., Huang, R., Sun, M., Gao, C., A novel composite nano.ltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile) (PAN) by epichlorohydrin cross-linking. Carbohydrate Research, 2006, vol.341, 2777-2784.
80. Musale, D. A., Kumar, A., Effects of surface crosslinking on sieving characteristics of chitosan : poly(acrylonitrile) composite nanofiltration membranes. Separation and Purification Technology, 2000, 21, 27-38.
81. Chen, G.H., Miao, J., Gao, C.J., A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS). Desalination, 2005, vol.181, 173-183.
82. Yamaguchi, T., Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. Journal of Membrane Science, 2003, vol.214, 283-292.
83. Kwak, S.Y., Effects of Bisphenol Monomer Structure on the Surface Morphology and Reverse Osmosis (RO) Performance of Thin-Film- Composite Membranes Composed of Polyphenyl Esters. Journal of Polymer Science : Part B: Polymer Physics, 1996, Vol.34, 2201-2208.
84. Lee, K.H., Kim, J.H., Kim, S.Y., Pervaporation separation of water from ethanol through polyimide composite membranes. Journal of Membrane Science, 2000, vol.169, 81-93.
85. Shah, V.J., Rao, A.P., Joshi, S.V., Trivedi, J.J., Devmurari, C.V., Structure performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation. Journal of Membrane Science, 2003 vol.211, 13-24.
86. Zhao, J., Du, R., Properties of poly (N,N-dimethylaminoethyl methacrylate) / polysulfonepositively charged composite nanofiltration membrane. Journal of Membrane Science, 2004, vol.239, 183-188.
87. Bian, X.k., Preparation and characterization of NF composite membrane. Journal of Membrane Science, 2002, vol.210, 3-11.
88. Roh, I.J., Influence of rupture strength of interfacially polymerized thin-film structure on the performance of polyamide composite membranes. Journal of Membrane Science, 2002, vol.199, 63-74.
89. Song, Y., Sun, P., Laurence, L., Sun, B., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. Journal of Membrane Science, 2005, vol.251, 67-79.
90. Schaep, J., Bruggen, B.V.N., Vandecasteele, C., Wilms, D., Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 1998, vol.14, 155-162.
91. Neilsen, D.W., Jonsson, G., Bulk-phase criteria for negative ion rejection in nanofiltration of multicomponent salt solutions. Separation Science and Technology, 1991, vol.29, 1165-1182.
92. Dresner, L., Some remarks on the integration of the extended Nernst-Planck equations in the hyperfiltration of multicomponent solutions. Desalination, 1972, vol.10, 27-46.
93. Bowen, W.R., Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 1996, vol.12, 263-274.
94. Donnan, F.G., Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science, 1995, vol100, 45-55.
95. Ghoul, M., Ismail A., Pontalier P.Y., Mechanisms for the selective rejection of solutes in nanofiltration membranes. Separation and Purification Technology, 1997 vol.12, 175-181.
96. Schaep, J., Bruggen, B.V.N., Vandecasteele, C., Wilms, D., Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 1998, vol.14, 155-162.
97. Peeters, J. M.M., Mulder, M.H.V., Boom, J.P., Strathmann, H., Retention measurements of nanofiltration membranes with electrolyte solutions. Journal of Membrane Science, 1998, vol.148, 199-209.
98. 郭惠如, Thermus aquaticus NTU103之Fosmid 選殖株B7F9 與生物膜形成之關係,慈濟大學微免暨分子醫學研究所,2007。
99. Hai, Y.X., Nagarajan, M.R., Li, C., Gibos, P.E., and Cooper, S.L., “Poly
(chloropropylmethyl-dimethylsiloxane)-polyurethane elastomers-synthesis and properties of segmented copolymers and related zwitterionomers”. Journal of Polymer Science, Part B : Polymer Physics, 1986, vol.24, 268-281.
100. Okkma, A.Z., and Cooper, S.L., “Effect of carboxylate and/or sulphonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane”. Biomaterials, 1991, vol.12, 668-77.
101. Silver, J.H., Marchant, J.W., and Cooper, S.L., “Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes”. Journal of biomedical materials research, 1993, vol.27, 1443-1448.
102. Flemming, R.G., Proctor, R.A., Cooper, S.L., “Bacterial adhesion to functionalized polyurethanes”. Journal of Biomaterials Science-Polymer Edition, 1999, vol.10, 679-697.
103. Flemming, R.G., Capelli, C.C., Cooper, S.L., Proctor, R.A., Bacterial colonization of functionalized polyurethanes. Biomaterials, 2000, vol.21, 273-281.
104. Baumgartner, J.N., Yang, C.Z., Cooper, S.L., Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials, 1997, vol.18, 831-837.
105. Sriram, V., Narayanan, G., Jeevan, R.G., Radhakrishnan, G., Comparative studies on short-chain and long-chain crosslinking in polyurethane networks. Macromolecular chemistry and physics, 2000, vol.201, 2799-2804.
106. Grapski, J.A., Cooper, S.L., Synthesis and characterization of non-leaching biocidal polyurethanes. Biomaterials, 2001, vol.22, 2239-2246.
107. Tiller, J.C., Liao, C.J., Lewis, K., Klibanov, A.M., Designing surfaces that kill bacteria on contact. Applied biological sciences, 2001, vol.98, 5981-5985.
108. Tiller, J.C., Lee, S.B., Lewis, K., Klibanov, A. M., Polymer surfaces derivatized with poly (vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and bioengineering, 2002, vol.79, 465-471.
109. Wang, I.W., Anderson, J.M., Marchant, R.E., Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. Journal of Infectious Diseases, 1993, vol.167, 329-336.
110. Wang, I.W., Anderson, J.M., Marchant, R.E., Platelet-mediated adhesion of Staphylococcus epidermids to hydrophobic NHLBI reference polyethylene. Journal of Biomedical Materials Research, 1993, vol.27, 1119-1128.
111. Merritt, K., Gaind, A., Anderson, J.M., Detection of bacterial adherence on biomedical polymers. Journal of Biomedical Materials Research, 1998, vol.39, 415-22.
112. Wang, I.W., Anderson, J.M., Jacobs, M.R., Marchant, R.E., Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions. Journal of Biomedical Materials Research, 1995, vol.29, 485-493.
113. Sapatnekar, S., Kieswetter, K.M., Merritt, K., Anderson, J.M., Cahalan, L., Verhoeven, M., Cahalan, P., Blood-biomaterial interaction in a flow system in presence of bacteria: effect of protein adsorption. Journal of Biomedical Materials Research, 29, 247-256.
114. Higashi, J.M., Wang, I.W., Shlaes, D.M., Anderson, J.M., Marchant, R.E., Adhesion of Staphylococcus epidermids and transposon mutant strains to hydrophobic polyethylene. Journal of Biomedical Materials Research, 1998, vol.39, 341-350.
115. Park, N., Kwon, B., Kim, I.S., and Cho, J., “Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters”. Journal of Membrane Science, 2005, Vol.258, 43-54.
116. 許倚哲,負電性奈米過膜之排鹽特性,中央大學化學工程與材料工程所,2007。
117. Xu, F.J., Yuan, S.I., Pehkonen, S.O., Kang, E.T., and Neoh, K.G., Antimicrobial surface of Viologen-Quaternized poly((2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. NanoBiotechnology, 2006, vol.2, 1551-1294.
118. Cheng, G., Zhang, Z., Chen, S., James, Jiang, S., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007, vol.28, 4192-4199.
119. Li, G., Cheng, G., Xue, H., Chen, S., Zhang, F., and Jiang, S., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group, Biomaterials. 2008, vol.29, 4592-4597.
指導教授 阮若屈(Ruoh-chyu Ruaan) 審核日期 2009-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明