博碩士論文 92344006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.137.161.222
姓名 王信介(Shen-Jie Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 覆晶凸塊封裝之兩界面反應交互作用研究
(Coupling Effects between Two Interfacial Soldering Reactions in Flip-Chip Solder Joint)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 覆晶(Flip-Chip)接合封裝技術中,一個銲錫凸塊往往連結兩個不同的金屬化墊層UBM (Under Bump Metallization)。當兩種完全不同的UBM結構與銲錫形成接點時,銲錫會與Ni墊層與Cu墊層同時發生界面反應。此種兩界面反應交互作用是一個非常重要且值得探討的問題。第一章回顧有關Sn/Ni與Sn/Cu兩界面反應交互影響的報導,我們發現Cu原子自Cu墊層溶解進入銲錫並擴散至Sn/Ni界面生成Cu-Sn化合物。此一Cu原子擴散的驅動力來自於靠近Sn/Ni界面的Cu溶解度降低而造成銲錫中存在一Cu的濃度梯度。本論文進一步利用一系列不同的metal/Sn/Cu三明治結構來探討兩個不同界面反應間其交互作用。
第二章中,將深入探討Ni/Sn/Cu三明治結構中Cu原子擴散的動力學機制。經短時間的迴銲反應,Cu端為典型Cu6Sn5化合物,而一三元化合物(Cu,Ni)6Sn5於Ni端生成。長時間的迴銲反應後,發現Cu端的Cu6Sn5化合物生長厚度隨時間的增加而維持一定厚度值,相反地,Ni端的(Cu,Ni)6Sn5生長迅速並與時間則呈一線性關係。由結果得知,此三元化合物(Cu,Ni)6Sn5的生長由Sn/Cu6Sn5界面的Cu dissolution flux所控制。經計算Cu6Sn5化合物於液態錫的溶解常數為0.13 (
摘要(英) It has been reported that as Ni and Cu bond pads are soldered to form a joint, Sn/Ni and Sn/Cu interfacial reactions would interact mutually, as reviewed in chapter 1. The dissolved Cu atoms from the Cu pad would move toward the Ni pad, then, a Cu-Sn compound layer formed on the Sn/Ni interface. In our previous study, the driving force of the migration of dissolved Cu atoms toward the Ni side has been proposed to attribute to the reduction of the Cu solubility near the Sn/Ni interface. This dissertation discusses the coupling effects between two interfacial reactions using a series of different metal/Sn/Cu sandwich structures.
In chapter 2, we further study the Cu diffusion mechanism in Ni/Sn/Cu sandwich structure. Using Ni/Sn/Cu sandwich sample, the mutual interaction between Sn/Ni and Sn/Cu interfacial reactions has been studied. On the Cu side, the major interfacial reaction product is Cu6Sn5, on the other hand, a ternary (Cu,Ni)6Sn5 compound layer formed on the Ni side. We found that the growth kinetics of the interfacial compound layers on the both sides would reach a steady-state in the late stage of reflow. The interfacial compound layer on the Cu side would remain a constant thickness. On the contrary, the interfacial compound layer on the Ni side grew in a relatively fast rate, which was found to be linear with time. Our results indicate that the growth of the ternary (Cu,Ni)6Sn5 compound layer was controlled by the Cu dissolution flux at the solder/Cu6Sn5 compound interface. The dissolution constant of the Cu6Sn5 compound into the molten Sn was determined to be 0.13 (
關鍵字(中) ★ 金凸塊
★ 界面反應
★ 無鉛銲錫
★ 覆晶封裝
關鍵字(英) ★ interfacial reaction
★ Au bump
★ Pb-free solder
★ Flip-chip
論文目次 Abstract (in Chinese) I
Abstract (in English) IV
Contents VIII
Figures Caption XI
List of Tables XVI
Chapter 1 Introduction
1.1 The Coupling Effects of Two Interfacial Reactions between Chip and Substrate side in Flip-chip Solder Joint……………………………………………..…….……1
1.2 Review…………………………………………………………………………………2
A. UBM on the substrate-side causes the spalling of Cu6Sn5 on the chip-side............2
B. Five groups by pairing all the different surface finishes……………………….......3
C. Sn/Cu/Sn/Ni/Sn/Cu/Sn reaction couple solid-state annealed at 200
參考文獻 1. P. G. Kim and K. N. Tu, J. Appl. Phys., 80(7), 3822, (1996).
2. C. Chen, C. E. Ho, A. H. Lin and C. R. Kao, J. Electronic Mater., 29(10),
1200, (2000).
3. S. W. Chen and Y. W. Yen, J. Electronic Mater., 28(11), 1203, (1999).
4. K. N. Tu, Acta Metall., 21, 347 (1973).
5. S. K. Kang and V. Ramachandran, Scripta Metall., 14, 421, (1980).
6. P. G. Kim, J. W. Jang and K. N. Tu, J. Appl. Phys., 86(12), 6746, (1999).
7. J. A. van Beek, S. A. Stolk, F. J. J. and van Loo, Z. Metallkde. 73, 439, (1982).
8. L. F. Miller, in Proc. IEEE Electr. Comp. and Conf., IEEE, New York, 52, (1968).
9. V. C. Marcotte and N. G. Koopman, in Proc. 31st IEEE Electr. Comp. Conf., IEEE, New York, 157, (1981).
10. K. Zeng and K. N. Tu, Mater. Science and Engineering R, 38, 55, (2002).
11. S. K. Kang, W. K. Choi, D. Y. Shih, P. Lauro, D. W. Henderson, T. Gosselin and D. N. Leonard, Electr. Comp. and Tech. Conf., 146, (2002).
12. S. W. Chen, S. H. Wu, and S. W. Lee, J. of Electronic Mater., 32, 1188, (2003).
13. C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh and C. R. Kao, J. of Electronic Mater., 33, 1424, (2004).
14. S. J. Wang and C. Y. Liu, J. Electronic Mater., 32(11), 1303, (2003).
15. C. Y. Liu and S. J. Wang, J. Electronic Mater., 32(1), L1, (2003).
16. M. S. Shin and Y. H. Kim, J. of Electronic Mater., 32(12), 1448, (2003).
17. D. R. Frear and P. T. Vianco, Metall. Trans. A, 25A, 1509, (1994).
18. J. K. Lin et al., Proc. 51st Electr. Comp. and Tech. Conf., 455, (2001).
19. D. Frear, D. Grivas and J.W. Morris Jr., J. Electronic Mater., 16, 181, (1987).
20. L. Quan, D. Frear, D. Grivas and J.W. Morris Jr., J. Electronic Mater., 16, 203, (1987).
21. L. F. Miller, in Proc. IEEE Electr. Comp. Conf., IEEE, New York, 52, (1968).
22. V. C. Marcotte and N. G. Koopman, in Proc. 31st IEEE Electr. Comp. Conf., IEEE, New York, 157, (1981).
23. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, J. Electronic Mater., 31, 548, (2002).
24. S. J. Wang, H. J. Kao and C. Y. Liu, J. Electronic Mater., 33(10), (2004).
25. W. T. Chen, C. E. Ho and C. R. Kao, J. Mater. Research, 17, 263, (2002).
26. S. J. Wang and C. Y. Liu, Scripta Materialia, 49, 813, (2003).
27. S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, Jin Yu and W. K. Choi, JOM, 56, 34, (2004).
28. K. N. Tu and K. Zeng, Mater. Science and Engineering R, 34, 1, (2001).
29. M. Onishi and H. Fujibuchi, Trans. JIM, 16, 539, (1975).
30. V. E. Starke et al., Z. Metallkd., 55, 107, (1964).
31. W. G. Bader, Welding Journal, 48, 551, (1969).
32. B. Meagher, D. Schwarcz and M. Ohring, J. of Mater. Science, 31, 5479, (1996).
33. J. F. Kuhman, C. H. Chinang, P. Harde, F. Reier, W. Oesterle, I. Urban and A. Klein, Mater. Science and Engineering A, 242, 22, (1998).
34. M. Klein, B. Wiens, M. Hutter, H. Oppermann, R. Aschenbrenner, and H. Reichl, Electr. Comp. and Tech. Conf., 40, (2000).
35. H. K. Kim and K. N. Tu, Phys. Rev. B, 53, 16027, (1996).
36. H. K. Kim and K. N. Tu, Appl. Phys. Lett. 67, 2002, (1995).
37. J. O. Suh, K. N. Tu and A. M. Gusak, Mater., Tech. and Reliability for Advanced Interconnects, 863, 375, (2005).
38. C. Y. Liu and K. N. Tu, J. Mater. Research, 13, 1, (1998).
39. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨ tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, App. Phys. Letter, 78, 32, (2001).
40. S. Zama, D. F. Baldwin, T. Hikami and H. Murata, IEEE Trans. on Electr. Packaging Manufacturing, 24(4), (2001).
41. F. J. Schmuckle, F. Lenk, M. Hutter, M. Klein, H. Oppermann, G.. Engelmann, M. Topper, K. Riepe and W. Heinrich, Microwave Symposium Digest, 2005 IEEE MTT-S International, 12-17 June, p. 1007, (2005).
42. L. Yin, Stephan J. Meschter, Timothy J. Singler, Acta Materialia, 52, 2873, (2004).
43. P. G.. Kim, K. N. Tu, Materials Chemistry and Physics, 53, 165, (1998).
44. C. Y. Liu, S. J. Wang, J. Mater. Research, 19(9), (2004).
45. O. B. Karlsen, A. Kjekshus, E. Røst, Acta Chemica Scandinavica, 46, 147, (1992).
46. C. C. Jao, Y. W. Yen, H. M. Hsiao, C. Lee and Y. Tseng, Proceedings of 2005 Chinese Society for Materials Science Annual Meeting, no. 2-1-O-004, (2005).
47. Brunner, B., Gordon, R., Marr, S., Proceedings of the 2nd Summit on PWB Surface Finishes and Solderability, IPC National Conference, p. 132, (1998).
48. K. S. Kim, S. H. Huh, K. Suganuma, J. of Alloys and Compounds, 352, 226, (2003).
49. O’Connell Jon, Agilent Tech. White Paper 2002.
50. Minnaarra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto and E. Ristolainen, J. Electronic Mater., 33(9), 977, (2004).
51. T. L. Su, L. C. Tsao, S. Y. Chang, T. H. Chuang, J. of Mater. Engineering and Performance, 11(4), 365, (2002).
52. C. Thwaites, Trans. Inst. Met. Finishing, 43, 143, (1965).
53. C. K. Cung, S. F. Tai, 2004 Inter Society Conf. on Thermal Phenomena, p. 116.
54. Henry Y. Lu, Haluk Balkan, K. Y. Simon Ng, JOM, 57(6), 30, (2005).
55. Kang S. K., Lauro P., Shih D. Y., Henderson DW., Bartelo J., Gosselin T., Cain S. R., Goldsmith C., Puttlitz K., Hwang T. K., Choi W. K., Materials Trans., 45(3), 1, (2004).
56. G. Humpston and D. M. Jacobson, “Principles of Soldering and Brazing”, ASM International, Materials Park, OH, (1993).
57. C. H. Yu and K. L. Lin, J. Mater. Research, 20(3), 666, (2005).
58. H. A. H. Steen, Swedish Institute for Metals Research, Report No. IM-1643, (1982).
59. K. Johal and J. Brewer, Proceddings of IPC Works 2000, paper no. S03-3, Miami, FL, (2000).
60. C. Y. Lee and K. L. Lin, Thin Solid Films, 249, 201, (1994).
61. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, J. Appl. Phys., 88, 6359 (2000).
62. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, J. Appl. Phys.,
85, 8456, (1999).
63. Z. Mei, P. Callery, D. Fisher, F. Hua and J. Glazer, Advances in Electronic Packaging, Proceedings of the Pacific Rim/ASME International Intersociety Electr. and Photonic Packaging Conf., vol. 2, p. 543, (1997).
64. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, Proceeding of Electr. Component and Tech. Conf., p. 952, (1998).
65. M. O. Alam, Y. C. Chan, K. C. Hung, Microelectronics Reliability, 42, p. 1065, (2002).
66. D. Goyal, T. Lane, P. Kinzie, and C. Panichas, Proceedings of 52th Electr. Comp. and Tech. Conf., p. 732, (2002).
67. Y. D. Jeon and K. W. Paik, Proceedings of the 51th Electr. Comp. and Tech. Conf., p. 732, (2001).
68. K. Zeng, V. Vuorinen and J. K. Kivilahti, IEEE Transactions on Electr. Packaging Manufacturing, 25, 3, 162, (2002).
69. H. D. Blair, T. Pan and J. M. Nicholson, Electr. Comp. and Tech. Conf., 6, p. 259, (1998).
70. H. Matsukia, H. Ibukab and H. Sakab, Science and Technology of Advanced Mater., 3, pp. 261-270, (2002).
71. Solder Data Sheet, Welco Castigs, 2 Hillyard Street, Hamilton, Ontario, Canada.
72. D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p. 60 (Van Nostrand Reinhold, New York, 1994).
73. D. E. Gray, ed., American Institute of Physics Handbook, pp. 2-61 ff. (McGraw-Hill, New York, 1957).
74. S. W. Chen, S. W. Lee and M. C. Yip, J. of Electronic Mater. 32(11), 1284, (2003).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2006-5-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明