博碩士論文 92346001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.22.119.251
姓名 趙裕(Yu Chao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 甲烷及乙醇重組產氫之研究
(Hydrogen Production via Methane/Ethanol Reforming)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 化石燃料短缺及空氣污染問題驅使科學家積極投入潔淨能源的研發工作。氫氣/合成氣可使用於引擎或燃料電池,使汙染氣體的排放量減至最少,為降低環境衝擊之永續能源選項之一,但是在應用於機動車輛及燃料電池時,存在貯存及基礎設施缺乏的問題。碳氫化合物重組產氫為解決此一問題的可行途徑,因此開發具有省能、精巧、可快速啟動之重組器是相當重要的。本研究探討甲烷、乙醇重組技術以及其可能的應用如固態氧化物燃料電池(SOFC)。本文分為三個部份,包括甲烷重組、乙醇重組及重組器應用於機車時之操作策略。
第一個部份為重組甲烷產氫,包括電漿輔助觸媒重組及觸媒重組兩種方式。電漿輔助觸媒重組之顆粒狀鎳觸媒置於電漿區後方,採用部分氧化法,重組過程沒有外加熱源,觸媒床溫度是由反應本身放出之熱量所維持的。測試結果達到氫氣產率89.9%及甲烷轉化率90.2%良好重組效果,其產氫耗能僅有1.21 MJ/kg-H2。若是以此重組器與燃料電池結合發電,其發電效率將比一般天然氣發電高出約20%。此外,熱力學模擬計算的結果與實驗結果相互吻合,顯示此一電漿輔助觸媒系統已達到理想的熱效率。觸媒重組,則是利用SOFC的高溫排氣廢熱,以Pt觸媒,採自熱重組反應,可以提供濃度將近80%的可燃氣體(H2 + CO,乾基)予SOFC。經1000小時以上長期測試,觸媒仍相當穩定。
第二個部份為商業規模的乙醇重組系統,以自熱重組法藉觸媒作用將乙醇重組產生富氫氣體。此重組系統首先測試四種貴金屬觸媒7天的性能表現,評估後,挑選Pt-Pd-Rh/?-Al2O3及Rh/?-Al2O3-CeO2-ZrO2進行26天的長期測試。前者在測試初期顯示出極佳的活性,乙醇轉化率達到97%。但是其活性隨著測試時間增加,有明顯的下降,5天後下降幅度趨緩,第26天測試結束時,乙醇轉化率僅剩約50%。Rh/?-Al2O3-CeO2-ZrO2的高活性則可維持約14天後逐漸降低至第26天的85%。
最後一個部份,我們設計一個電漿輔助觸媒重組器,將其安裝於機車引擎前。此車載型重組器可將甲烷重組轉化為富氫氣體,並與汽油混合為複合燃料後導入引擎。此重組器針對機車冷車啟動、低負載及巡航三種狀況發展各自最佳的操作模式。在冷車啟動階段,藉由電漿的作用,可以使觸媒床溫度在14秒內由室溫約25oC提升到500oC以上。在巡航模式,其目標是達到最大的熱值產出,而在低負載模式,其策略則是以省能為考量。重組器的電漿消耗32.4W的電能,但是可提高重組產物2 ~ 16%的熱值。低負載時,引擎結合重組器以複合燃料測試的結果,排氣中的CO及HC濃度可以分別降低42%及21%,引擎馬力提高14%,而油耗反而降低33%。且經實驗證實,引擎在低負載運轉時,重組器的電漿可以關閉以減低耗能,又不會過於降低重組器的效果,可以滿足引擎運轉需求。總而言之,電漿在冷車啟動模式扮演相當重要的角色,於巡航模式則是扮演次要的角色,至於在低負載模式,其影響則相當輕微。
本研究已成功開發甲烷電漿輔助觸媒重組器及觸媒重組器,可分別使用於機車引擎及SOFC,未來若能推廣應用,可改善能源利用效率、CO2排放及空氣品質,對環境品質有相當的助益。
摘要(英) The scarcity of fossil fuels and the problems of air pollution draw researchers to search more efficient and clearer energy sources. Syngas/hydrogen may become a vital energy for sustained power consumption with reduced impact on the environment. It can be used in engines or fuel cells with minimal emissions of pollutant gases. But certain problems such as syngas/hydrogen storage and infrastructure.exist for vehicles and fuel cells application The conversion of hydrocarbon to hydrogen is a potential source of hydrogen production and supply to fuel cell and hybrid vehicles. Therefore, a reformer designing to generate syngas on board with the characters of energy-saving, compactness, fast start-up and rapid response is particularly important and essential. This study demonstrates methane and ethanol reforming technologies as well as their possible applications. There are three parts in this study, i.e. methane reforming, ethanol reforming and operating strategy for motorcycle.
The first part demonstrates an economic reforming process that combines arc plasma with catalyst in series for hydrogen production. Hydrogen was generated by means of partial oxidation of methane. Granular Ni catalysts were packed in the post plasma zone. No extra-energy was needed to sustain the temperature of catalyst bed; the elevated temperature was maintained both by the hot gases from plasma region and by the heat of reforming reaction itself. A promising energy efficiency of 1.21 MJ/kg-H2, being together with high hydrogen yield (89.9%) and high methane conversion (90.2%), was experimentally achieved. The energy efficiency is estimated 20% higher compared with a gas turbine system with methane as the fuel. In addition, thermodynamic analysis for partial oxidation of methane was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the plasma-assisted catalysis process. Methane was also reformed by Pt catalyst in this study. Autothermal reaction was adopted and preheated reactants by recovering the waste heat of high temperature flue gas exhausted form SOFC. The concentration of combustible gas (H2 + CO, dry base) was as high as 80% in the reformate. Catalyst performance was very stable during the 1000-hr durability test.
The second part shows a commercial-scale ethanol reforming system, which converts ethanol into hydrogen-rich gases, via autothermal reaction mechanism. In this study, four kinds of noble metal catalyst were extensively investigated with the ethanol reforming system. Two of the four catalysts, Pt-Pd-Rh/?-Al2O3 and Rh/?-Al2O3-CeO2-ZrO2, had been conducted in a 26-day long-time test. The Pt-Pd-Rh/?-Al2O3 catalyst showed high catalytic activity and achieved an ethanol conversion of 97% in the early stage; but deactivated with reaction time and finally achieved a conversion of only 50% at 26th day. The Rh/?-Al2O3-CeO2-ZrO2 catalyst achieved and maintained high ethanol conversion for the first 14 days, then gradually decreased and achieved a conversion efficiency of 85% at 26th day.
In the last part, we designed a compact plasma-assisted catalysis (PAC) reformer as an onboard device for motorcycle. This PAC reformer was used to convert methane into a hydrogen-rich gas which then mixed with gasoline to fuel motorcycle engine. Performance of the PAC reformer for motorcycle operated in the cold start, low load and normal cruising periods were evaluated experimentally. In the cold start period, with the assistance of plasma the catalyst-bed temperature could rise from 25oC to > 500oC in 14 s. In the normal operation mode, the goal is to achieve either a high power output in the cruising mode or a low energy consumption in the idle mode. At 32.4 W power consumption of plasma, the total thermal power of reformates increased by 2% to 16% at given conditions. Idle engine test showed that the PAC reformer not only reduced CO and HC emission by 42% and 21%, respectively, but also enhanced the engine performance, e.g. the brake power increased by 14% and the gasoline consumption by 33%. This study confirmed that in the low load mode, the plasma can be turned off without sacrificing the PAC’s performance. In brief, the plasma plays a great role in the cold start, be minor in the cruising mode, and trivial in the low load mode.
This study has successfully developed a methane plasma-assisted catalysis reformer and a methane catalyst reformer for motrocycle engine and SOFC, respectively. They could improve the energy utility efficiency, CO2 emission and air quality if these reformer could be applied in the future. This is beneficial to the environment.
關鍵字(中) ★ 電漿輔助觸媒
★ 觸媒重組
★ 機車
★ 燃料電池
關鍵字(英) ★ Fuel cell
★ Motorcycle
★ Catalyst reforming
★ Plasma-Assisted Catalysis(PAC)
論文目次 中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… iii
目錄 ………………………………………………………… vi
圖目錄 ………………………………………………………… ix
表目錄 ………………………………………………………… xiii
符號與公式……………………………………………………… xiv
第一章 緒論…………………………………………………… 1
第二章 文獻回顧……………………………………………… 6
2-1 電漿技術簡介………………………………………… 6
2-1-1 電漿基本原理……………………………………… 6
2-1-2 應用於重組反應之電漿種類……………………… 10
2-2 甲烷重組……………………………………………… 15
2-2-1 甲烷觸媒重組……………………………………… 16
2-2-2 甲烷電漿重組……………………………………… 17
2-2-3 甲烷電漿輔助觸媒重組…………………………… 19
2-3 乙醇重組……………………………………………… 20
2-3-1 乙醇蒸汽重組……………………………………… 21
2-3-2 乙醇自熱重組……………………………………… 30
2-4 富氫氣體於引擎上之應用…………………………… 33
第三章 實驗方法與設備……………………………………… 36
3-1 擔體與觸媒製備……………………………………… 36
3-1-1 Ni/γ-Al2O3觸媒………………………………… 36
3-1-2 Pt/CeO2-?-Al2O3觸媒…………………………… 36
3-1-3 Rh/CeO2-ZrO2-?-Al2O3觸媒…………………… 37
3-2 重組實驗……………………………………………… 37
3-2-1 甲烷電漿輔助觸媒重組實驗……………………… 37
3-2-2 甲烷觸媒重組實驗………………………………… 39
3-2-3 乙醇重組實驗……………………………………… 40
3-2-4 重組器使用於機車引擎之操作策略……………… 42
3-3 主要實驗設備………………………………………… 44
3-3-1 電源供應器………………………………………… 44
3-3-2 氣相層析儀………………………………………… 45
3-3-3 微型氣相層析儀…………………………………… 46
3-3-4 機車引擎動力計…………………………………… 46
3-3-5 周邊設備…………………………………………… 46
第四章 甲烷重組……………………………………………… 48
4-1 甲烷重組熱力學模擬………………………………… 48
4-1-1 甲烷部分氧化反應………………………………… 48
4-1-2 甲烷蒸氣重組反應………………………………… 52
4-1-3 甲烷自熱重組反應………………………………… 55
4-2 甲烷電漿輔助觸媒重組……………………………… 65
4-2-1 甲烷電漿重組進料組成…………………………… 65
4-2-2 觸媒程式升溫還原測試…………………………… 67
4-2-3 電漿輔助觸媒重組實驗結果……………………… 68
4-2-4 產氫成本與能源效率……………………………… 76
4-3 甲烷電漿重組………………………………………… 77
4-4 甲烷觸媒重組………………………………………… 79
第五章 乙醇重組……………………………………………… 87
5-1 乙醇重組熱力學模擬………………………………… 87
5-1-1 乙醇部分氧化反應………………………………… 87
5-1-2 乙醇蒸氣重組反應………………………………… 92
5-1-3 乙醇自熱重組反應………………………………… 95
5-2 乙醇重組系統及觸媒長期測試……………………… 112
5-2-1 1 kW乙醇重組器…………………………………… 112
5-2-2 乙醇自熱重組……………………………………… 115
第六章 重組器使用於機車引擎之操作策略………………… 125
6-1 啟動模式……………………………………………… 126
6-2 正常行車模式………………………………………… 132
6-2-1 電漿對電漿輔助觸媒重組性能的影響…………… 132
6-2-2 正常行車模式的最佳操作參數…………………… 135
6-2-3 重組器結合機車引擎測試………………………… 137
6-3 實車改裝與汽油重組器開發………………………… 138
6-3-1 實車改裝…………………………………………… 138
6-3-2 汽油重組器開發…………………………………… 142
第七章 結論與建議…………………………………………… 149
7-1 結論…………………………………………………… 149
7-2 建議…………………………………………………… 150
參考文獻…………………………………………………………… 152
參考文獻 Akande A. J., Idem R. O., Dalai A. K., Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A, General, 2005, 287, 159-175.
Al-Baghdadi M. A. S., Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel. International Journal of Hydrogen Energy, 2000, 25, 1005-1009.
AI-Janabi H. A. S., AI-Baghdadi M. A. S., A prediction study of the effect of hydrogen blending on the performance and pollutants emission of a four stroke spark ignition engine. International Journal of Hydrogen Energy, 1999, 24, 363-375.
Aupretre F., Descorme C., Duprez D., Casanave D., Uzio D., Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts. Journal of Catalysis, 2005, 233, 464-477.
Average retail price of electricity to ultimate customers by end-use sector, by State. http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html, 2007.
Barroso M. N., Gomez F. M., Arrúa L. A., Abello M. C., Hydrogen production by ethanol reforming over NiZnAl catalysts. Applied Catalysis A, General, 2006, 304, 116-123.
Batista M. S., Santos R. K. S., Assaf E. M., Assaf J. M., Ticianelli EA, Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. Journal of Power Sources, 2003, 124, 99-103.
Batista M. S., Santos R. K. S., Assaf E. M., Assaf J. M., Ticianelli E. A., High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 2004, 134, 27-32.
Benilov M. S. and Naidis G. V., Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels. International Journal of Hydrogen Energy, 2006, 31, 769-774.
BP Statistical Review of World Energy, 2008.
Breen J. P., Burch R., Coleman H. M., Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental, 2002, 39, 65-74.
Bromberg L., Cohn D. R., Rabinovich A., Surma J. E., Virden J., Compact plasmatron-boosted hydrogen generation technology for vehicular applications. International Journal of Hydrogen Energy, 1999, 24, 341-350.
Bromberg L., Cohn D. R., Rabinovich A., Alexeev N., Hydrogen manufacturing using low current, non-thermal plasma boosted fuel converters. Massachusetts Institute of Technology 2000 JA Series, PSFC-JA-00-39, 2000a.
Bromberg L., Cohn D. R., Rabinovich A., Alexeev N., Samokhin A., Ramprasad R., Tamhankar S., System optimization and cost analysis of plasma catalytic reforming of natural gas. International Journal of Hydrogen Energy, 2000b, 25, 1157-1161.
Bromberg L., Cohn D. R., Rabinovich A., Heywood J., Emissions reductions using hydrogen from plasmatron fuel converters. International Journal of Hydrogen Energy, 2001, 26, 1115-1121.
Casanovas A., Llorca J., Homs N., Fierro J. L. G., Piscina P. R., Ethanol reforming processes over ZnO-supported palladium catalysts: Effect of alloy formation. Journal of Molecular Catalysis A: Chemical, 2006, 250, 44-49.
Cavallaro S., Mondello N., Freni S., Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. Journal of Power Sources, 2001, 102, 198-204.
Cavallaro S., Chiodo V., Freni S., Mondello N., Frusteri F., Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis A: General, 2003, 249, 119-128.
Chang J. S., Chakrabari A., Urashima K., Arai M., The effects of barium titanate pellet shapes on the gas discharge characteristics of ferroelectric packed-bed reactors. Conference on Electrical Insulation and Dielectric Phenomena, 1998, 485.
Chao Y., Huang C. T., Lee H. M., Chang M. B., Hydrogen production via partial oxidation of methane with plasma-assisted catalysis. International Journal of Hydrogen Energy, 2008, 33, 664-671.
Chen H. L., Lee H. M., Chen S. H., Chao Y., Chang M. B., Review of plasma catalysis on hydrocarbon reforming for hydrogen production- interaction, integration, and prospects. Applied Catalysis B: Environmental, 2008, 85, 1-9.
Chen H. L., Lee H. M., Chen S. H., Chang M. B., Yu S. J., Li S. N., Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 2009, 43, 2216-2227
Cohn D. R., Rabinovich A., Titus C. H., Bromberg L., Near-term possibilities for extremely low emission vehicles using onboard plasmatron generation of hydrogen. International Journal of Hydrogen Energy, 1997, 22, 715-723.
Comas J., Mariño F., Laborde M., Amadeo N., Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 2004, 98, 61-68.
Czernichowski A., GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases, Oil & Gas Science and Technology - Revue de l'IFP, 2001, 56, 2, 181-198.
Czernichowski A., Czernichowski M., Czernichowski P., Glidarc-assisted reforming of gasoline and diesel oils into synthesis gas. 2003a, www.waterstof.org/20030805EHECP1-66.pdf.
Czernichowski A., Czernichowski M., Czernichowski P., Glidarc-assisted production of synthesis gas from natural gas. 2003b, www.waterstof.org/20030805EHECP1-65.pdf.
D’Andrea T., Henshawa P. F., Ting D-S.K., The addition of hydrogen to a gasoline-fuelled SI engine. International Journal of Hydrogen Energy, 2004, 29, 1541-1552.
Deluga G. A., Salge J. R., Schmidt L. D., Verykios X. E., Renewable hydrogen from ethanol by autothermal reforming. Science, 2004, 303, 993-997.
Deminsky M., Jivotov V., Potapkin B., Rusanov V., Plasma-assisted production of hydrogen from hydrocarbons. Pure and Applied Chemistry, 2002, 74, 413-418.
Diagne C., Idriss H., Kiennemann A., Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catalysis Communications, 2002, 3, 565-571.
Erdőhelyi A., Raskó J., Kecskés T., Tóth M., Dömök M., Baán K., Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 2006, 116, 367-376.
Fajardo H. V. and Probst L. F. D., Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts. Applied Catalysis A: General, 2006, 306, 134-141.
Fatsikostas A. N., Verykios X. E., Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 2004, 225, pp. 439-452.
Fierro V., Akdim O., Provendier H., Mirodatos C., Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 2005, 145, 659-666.
Frusteri F., Freni S., Spadaro L., Chiodo V., Bonura G., Donato S., Cavallaro S., H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 2004a, 5, 611-615.
Frusteri F., Freni S., Chiodo V., Spadaro L., Di Blasi O., Bonura G., Cavallaro S., Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 2004b, 270, 1-7.
Frusteri F., Freni S., Chiodo V., Donato S., Bonura G., Cavallaro S., Steam and auto-thermal reforming of bio-ethanol over MgO and CeO Ni supported catalysts. International Journal of Hydrogen Energy, 2006, 31, 2193-2199.
Fuel Cell Basics, Benefits. 2007, www.fuelcells.org/basics/benefits.html.
Futamura S., Kabashima H., Hisahior E., Steam reforming of aliphatic hydrocarbons with nonthermal plasma. IEEE Transaction on Industry Applications, 2004a, 40, 1476-1481.
Futamura S., Kabashima H., Ma L,. Potential of nonthermal plasma in fuel reforming. 4th International Symposium on Non Thermal Plasma Technology for Pollution Control and Sustainable Energy Development, 2004b.
Galloni E. and Minutillo M., Performance of a spark ignition engine fuelled with reformate gas produced on-board vehicle. International Journal of Hydrogen Energy, 2007, 32, 2532-2538.
Grill A., Cold plasma in materials fabrication. IEEE Press, New York, 1994.
Hadidi K., Bromberg L., Cohn D. R., Rabinovich A., Alexeev N., Samokhin A., Plasma catalyst reforming of biofuels. Massachusetts Institute of Technology, 2003, JA Series, PSFC-JA-03-28, 2003.
Hammer T., Kappes T., Baldauf M., Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catalysis Today, 2004, 89, 5-14.
Haryanto A., Fernando S., Murali N., Adhikari S., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel, 2005; 19: 2098-2106.
Heintze M. and Pietruszka B, Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catalysis Today, 2004, 89, 21-25.
Holzer F., Kopinke F. D., Roland U., Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing, 2005, 25, 595-611.
Horng R. F., Chang Y. P., Wu S. C., Investigation on the production of hydrogen rich gas in a plasma converter for motorcycle applications. Energy Conversion and Management, 2006, 47, 2155-2166.
Horng R. F., Wen C. S., Liauh C. T., Chao Y., Huang C. T., Driving characteristics of a motorcycle fuelled with hydrogen-rich gas produced by an onboard plasma reformer. International Journal of Hydrogen Energy, 2008a, 33, 7619-7629.
Horng R. F., Huang H. H., Wen C. S., Lai M. P., Wen C. S., Characteristics of hydrogen production by a plasma-catalyst hybrid converter with energy saving schemes under atmospheric pressure. International Journal of Hydrogen Energy, 2008b, 33, 3719-3727.
Kang I., Yoon S., Bae G., Kim J. H., Bae J., Lee D., Song Y., The micro-reactor testing of catalysts and fuel delivery apparatuses for diesel autothermal reforming. Catalysis Today, 2008, 136, 249-257.
Kappes T. and Hammer T., Methane reforming using non-thermal plasma. 4th International Symposium on Non Thermal Plasma Technology For Pollution Control and Sustainable Energy Development, 2004.
Kogelschatz U., Eliasson B., Egli W., From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges. Pure and Applied Chemistry, 1999, 71, 1819-1828.
Kugai J., Subramani V., Song C. H., Engelhard M. H., Chin Y. H., Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. Journal of Catalysis, 2006, 238, 430-440.
Kumar M. S., Ramesh A., Nagalingam B., Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine. International Journal of Hydrogen Energy, 2003, 28, 1143-1154.
Li C. Y., Yu C. C., Shen S. K., Isotopic studies on the mechanism of partial oxidation of CH4 to syngas over a Ni/Al2O3 catalyst. Catalysis Letters, 2001, 75, 183-189.
Li H. Q., Zou J. J., Zhang Y. P., Liu C. J., Novel plasma methanol decomposition to hydrogen using corona discharges. Chemistry Letters, 2004, 33, 6, 744-745
Liguras D. K., Kondarides D. I., Verykios X. E., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 2003, 43, 345-354.
Liguras D. K., Goundani K., Verykios X. E., Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts. Journal of Power Sources, 2004a, 130, 30-37.
Liguras D. K., Goundani K., Verykios X. E., Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts. International Journal of Hydrogen Energy, 2004b, 29, 419-427.
Llorca J., Piscina P. R., Dalmon J. A., Sales J., Homs N., CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Applied Catalysis B: Environmental, 2003, 43, 355-369.
Llorca J., Homs N., Piscina P. R., In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. Journal of Catalysis, 2004a, 227, 556-560.
Llorca J., Homs N., Sales J., Fierro J. L. G., Piscina P. R., Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 2004b, 222, 470-480.
Löffler D. G., Taylor K., Mason D., A light hydrocarbon fuel processor producing high-purity hydrogen. Journal of Power Sources, 2003, 117, 84-91.
Mariño F. J., Cerrella E. G., Duhalde S., Jobbagy M., Laborde M. A., Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts. International Journal of Hydrogen Energy, 1998, 23, 1095-1101.
Mariño F. J., Baronetti G., Jobbagy M., Laborde M. A., Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal-support interaction. Applied Catalysis A: General, 2003, 238, 41-54.
Marinov N. M., A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics, 1999, 31, 183-220.
Melo F. and Morlanés N., Naphtha steam reforming for hydrogen production. Catalysis Today, 2005, 107-108, 458-466.
Minutillo M., Onboard fuel processor modelling for hydrogen-enriched gasoline fuelled engine. International Journal of Hydrogen Energy, 2005, 30, 1483-1490.
Nair S. A., Nozaki T., Okazaki K., Methane oxidative conversion pathways in a dielectric barrier discharge reactor - Investigation of gas phase mechanism. Chemical Engineering Journal, 2007, 132, 85-95.
Natural gas prices. http://tonto.eia.doe.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm, 2007.
Navarro R. M., Álvarez-Galván M. C., Sánchez-Sánchez M. C., Rosa F., Fierro J. L. G., Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis B: Environmental, 2005, 55, 229-241.
Ni M., Leung Y. C., Leung K. H., A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 3238-3247.
Nozaki T., Hattori A., Okazaki K., Partial oxidation of methane using a microscale non-equilibrium plasma reactor, Catalysis Today, 2004, 98, 607-616
Oukacine L., Gitzhofer F., Abatzoglou N., Gravelle D., Application of the induction plasma to the synthesis of two dimensional steam methane reforming Ni/Al2O3 catalyst. Surface & Coatings Technology, 2006, 201, 2046-2053.
Outokumpu, HSC Chemistry® for Windows. Chemical reaction and equilibrium software with extensive thermochemical database. Version 5.0, ISBN 952-9507-08-9, 2002.
Paschen F., Uber die zum funkenubergang in luft, wasserstoff und kohlensaure bei verschiedenen drucken erforderliche potentialdifferenz. Weid. Annalen der Physick, 1889, 37, 69-75.
Paulmier T. and Fulcheri L., Use of non-thermal plasma for hydrocarbon reforming. Chemical Engineering Journal, 2005, 106, 59-71.
Pietruszka B., Anklam K., Heintze M., Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge. Applied Catalysis A: General, 2004, 261, 19–24.
Pietruszka B.and Heintze M., Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma. Catalysis Today, 2004, 90, 151-158.
Pino L., Vita A., Cordaro M., Recupero V., Hegde M. S., A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles. Applied Catalysis A: General, 2003, 243, 135-146
Roh H. S., Jun K. W., Dong W. S., Chang J. S., Park S. E., Joe Y. I., Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane. Journal of Molecular Catalysis A: Chemical, 2002, 181, 137-142.
Rusu I. and Cormier J. M., On a possible mechanism of the methane steam reforming in a gliding arc reactor. Chemical Engineering Journal, 2003, 91, 23-31.
Salge J. R., Deluga G. A., Schmidt L. D., Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis, 2005, 235, 69-78.
Saravanan N., Nagarajan G., Narayanasamy S., An experimental investigation on DI diesel engine with hydrogen fuel. Renewable Energy, 2008, 33, 415-421.
Sekiguchi H. and Mori Y., Steam plasma reforming using microwave discharge. Thin Solid Films, 2003, 435, 44-48.
Sobacchi M. G., Saveliev A. V., Fridman A. A., Kennedy L. A., Ahmed S., Krause T., Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. International Journal of Hydrogen Energy, 2002, 27, 635-642.
Subramanian V., Mallikarjuna J. M., Ramesh A., Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine. International Journal of Hydrogen Energy, 2007, 37, 1159-1173.
Sun J., Qiu X .P., Wu F., Zhu W. T., H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy, 2005, 30, 437-445.
Takaki K., Urashima K., Chang J. S., Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type non-thermal plasma reactor. IEEE Transactions on Plasma Science, 2004, 32, 2175-2183.
Takaki K., Urashima K., Chang J. S., Scale-up of ferro-electric packed bed reactor for C2F6 decomposition. Thin Solid Films, 2006, 506-507, 414-417.
Tsolakis A. and Megaritis A., Partially premixed charge compression ignition engine with onboard H2 production by exhaust gas fuel reforming of diesel and biodiesel. International Journal of Hydrogen Energy, 2005, 30,731-745.
Vaidya P. D., Rodrigues A. E., Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 2006, 117, 39-49.
Velu S., Suzuki K., Vijayaraj M., Barman S., Gopinath C. S., In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 2005, 55, 287-299.
Vizcaíno A. J., Carrero A., Calles J. A., Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. International Journal of Hydrogen Energy, 2007, 32, 1450-1461.
Vollrath K, and Thomer G, “Kurzzeitphysik,” Springer, Wien, 1967
Wanat E. C., Venkataraman K., Schmidt L. D., Steam reforming and water-gas shift of ethanol on Rh and Rh-Ce catalysts in a catalytic wall reactor. Applied Catalysis A: General, 2004, 276, 155-162.
Yang Y., Ma J., Wu F., Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst, International Journal of Hydrogen Energy, 2006, 31, 877-882.
Yao S., Nakayama A., Suzuki E., Acetylene and hydrogen from pulsed plasma conversion of methane. Catalysis Today, 2001a, 71, 219-223.
Yao S., Suzuki E., Nakayama A., A novel pulsed plasma for chemical conversion. Thin Solid Films, 2001b, 390, 165-169.
Youn M. H., Seo J. G., Kim P, Song I. K., Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol. Journal of Molecular Catalysis A: Chemical, 2007, 261, 276-281.
Yüksel F., Ceviz M. A., Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel. Energy, 2003, 28, 1069-1080.
Zhu Y. R., Li Z. H., Zhou Y. H., Lv J., Wang H. T., Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. Reaction Kinetics and Catalysis Letters, 2006, 87, 33-41.
李財興,黃慶村,天然氣高溫觸媒重組研究,核研所研究報告INER-4320R,2006。
郭茂穗,以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究,中央大學博士論文,2004。
指導教授 張木彬(Moo-Been Chang) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明