博碩士論文 92426018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.234.208.66
姓名 劉蕙瑜(Hwei-Yu Liu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以Char演算法協同特徵化公司財務表現
(Characterizing Cooperate Financial Performance with Char Algorithm)
相關論文
★ 以八階段分析法進行談判策略之個案研究★ 以AHP法研究企業評選顧問公司之準則
★ B2B拍賣網上結標價和結標時間的預測★ 應用啟發式演算法挖掘與表示商業流程的碳排量屬性
★ ERP為基準碳足跡計算之觀念性架構發展★ 作業基礎制碳足跡方法-以作業制成本法為基礎發展產品碳足跡計算之方法
★ 不同顆粒度流程一致化之研究★ 一致化不同顆粒度所衍生企業流程之研究
★ 企業導入企業資源規劃系統之目標、過程與成效★ 運用動態分群方法在市場區隔上 -以電信產業為例
★ 企業資源規劃系統之執行效果 ─以台灣地區企業為例★ 運用時間斐氏圖模擬SCOR流程
★ ERP導入期關鍵活動與企業財務績效關聯之研究★ 於共引用分析中使用完整作者集之研究
★ 探討客戶權力在客服工程師知識分享意圖之影響★ 以數學規劃求解最佳之間接材料選擇與人力配置
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現代投資人遇到的問題並非缺少可分析的資料,而是面對這麼多在網路上唾手可得的財務資料,根本不知從合分析起。因此本篇論文的研究動機即是想幫投資人從表現良好的上市電子公司之財務報表中,歸納出既有的特色,找出特徵化會計科目或是財務比率的組合,進而建議投資人,在閱讀財務報表時,可以專注於哪些特定少數的特徵化屬性,即可以使用較少的力氣,得到較多的資訊內涵。
此篇論文,在前置過程中,依序使用滑動視窗,處裡上市公司資料長短不依的問題;接著,應用小波技術解決時間序列的問題;之後使用階層分層技術,來離散化資料,使之資料型態可以適用於Char演算法。最後由資產報酬率觀點,我們選擇了107家表現良好的台灣上市電子公司進行實驗,以Char演算法找出財務報表中的特徵規則,得到結果發現,在總共88的會計科目和財務比率中,成長率這個群組的屬性,公司良好表現有很大的關聯性。因此建議投資人在分析財務報表時,可以多注意這些特徵規則。
摘要(英) In the perspective of investments, they desire to use the less financial variables to anticipate the most performance information. Every human being is increasingly faced with unmanageable amounts of financial data; hence, data mining or knowledge discovery apparently affects all of us. In this study of mining performance of company, we attempt to summarize the stronger characteristic rules of fundamental analysis using 81 financial statement variables. To address this problem, we proposed an effective method, a Char Algorithm, to automatically produce characteristic rules to describe the major characteristics of data in a table is proposed. To fit the data type of Char Algorithm, we proceed many steps to preprocess source data of financial statement from 2001-2003. In the first step, data compression, we adapt wavelet methods to preprocess time series data of several attributes from financial statement from 2001-2003. After data to be compressed by wavelet technique, the second step, sliding window, processes in order to increase the amount of virtual data. Thirdly, we use cluster method to do data discretization process categorizing data to fit the discrete data type.
It is a difficult task to construct a concept tree to describe the financial statement. In contrast to traditional Attribute Oriented Induction methods, the algorithm, named as Char Algorithm, does not need a concept tree and only requires setting a desired coverage threshold to generate a minimal set of characteristic rules to describe the given dataset. We develop a formal framework for financial data to adapt Char Algorithm and afford advisements to investors to extract characteristic rules, rapidly. It is also our observation that the dimension of growth rate is significant in circumstance of generalizing good performance companies.
關鍵字(中) ★ 財務報表
★ 小波
★ 資料採礦
關鍵字(英) ★ Wavelet
★ Financial Statement
★ Data Mining
論文目次 List of Figure …………………………………………………ш
List of Table…………………………………………………..ш
Chapter 1. Introduction…………………………………………1
1.1 Background …………………………………………………… 1
1.2 Motivation …………………………………………………….. 2
1.3 Research Object ……………………………………………….. 3
1.4 Thesis Organization …………………………………………… 5
Chapter 2. Literature review………………………………….6
2.1 Finance ………………………………………………………..6
2.2 Data Mining ………………………………………………….. 7
2.3 Wavelet ………………………………………………………. 8
2.4 Discretization ………………………………………………….9
2.4.1 Discretization ……………………………………………. 9
2.4.2 Clustering ………………………………………………...11
2.5 Char Algorithm ……………………………………………….12
Chapter 3. Methodology………………………………………14
3.1 Data preprocessing .…………………………………………. 15
3.1.1 Data compression …………………………………………….16
3.1.2 Sliding Window ………………………………………………19
3.1.3 Data Discretization …………………………………………...19
3.2 Char Algorithm …………………………………………………………. 20
Chapter 4. Experimental………………………………………25
4.1 Experimental design.…………………………………………..25
4.2 Experimental results.………………………………………….26
Chapter 5. Conclusions and Recommendations………….31
5.1 Conclusions. .………………………………………….……….31
5.2 Recommendation for the Future Study………………………..32
Reference …………………………………………………….33
Appendix A…………………………………………………...37
Appendix B…………………………………………………...40
參考文獻 Reference in English
[1] Stefan Zemke. (2003).Data Mining for Prediction Financial Series Case. The Royal Institute of Technology, Sweden.
[2] Fama, E. (1965). The behavior of stock market prices. Journal of Business,
January, 34–105.
[3] Haughen, R. (1997). Modern investment theory. Prentice Hall.
[4] Monica Lam.(2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems 37 ,pp 567– 581
[5] M.J. Pring. (1980). Technical Analysis Explained. McGraw-Hill, New York.
[8] Yu-Chin Liu , and Ping-Yu Hsu.(2004). Char : an Automatic Way to Describe Characteristics of Data
[9] B. Wuthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, J. Zhang, W. Lam. (1998). Daily Stock Market Forecast from Textual Web Data. Knowledge Discovery and Data Mining
[10] R. L. Iman, W. J. Conover. ( 1989). Modern Business Statistics. Wiley.
[11] M. J. Pring. (1991). Technical Analysis Explained, McGraw-Hill
[12] N. Nazmi, (1993). Forecasting Cyclical Turning Points with an Index of Leading Indicators: A Probabilistic Approach, Journal of Forecasting. Vol 12, No. 3&4, pp. 216-226.
[13] Pictet et al. (1996). Genetic Algorithms with Collective Sharing for Robust Optimization in Financial Applications. TR Olsen & Associates Ltd., Seefeldstr. 233, 8008 Zurich.
[14] S.B. Reynolds and A. Maxwell. (1995). Box-Jenkins Forecast Model Identification. AI Expert, 10(6) pp. 15-28.
[15] H. Wong, W.C. Ip, Y.H. Luan and Z.J. Xie. (1996). Wavelet Detection of Jump Points And an Application to Exchange Rates. TR The Hong Kong Polytechnic University, Dept. of Applied Mathematics.
[16] D. Wood et al. (1996). Classifying trend movements in the MSCI USA Capital Market Index – a Comparison of Regression, ARIMA and Neural Network. Computers & Operations Research, Vol 23(6) pp. 611-622.
[17] Ou, J. and S. Penman. (1989). Financial Statement Analysis and the Prediction of Stock Returns. Journal of Accounting and Economics, pp295-329.
[18] V. Dropsy. (1996). Do macroeconomic factors help in predicting international equity risk premia? Journal of Applied Business Research 12 (3) 120–132.
[19] Richard G.Sloan. (2001). Discussion of :”Contextual Fundamental Analysis Through the Prediction of Extreme Returns”. Review of Accounting Studies ;Jun-Sep 2001:6,2-3;ABI/INFORM Global,pp191.
[20] Jim Gray, Series Editor. (2000). Data Mining Techniques Morgan Kaufmann Publishers.
[21] Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara. ().A Survey on Wavelet Applications in Data Mining.
[22] F. Abramovich, T. Bailey, and T. Sapatinas. (2000). Wavelet analysis and its statistical applications. JRSSD, (48):1–30.
[23] H. LIU, F. HUSSAIN, C. L. TAN, M. DASH. (2002). Discretization: An Enabling Technique. Data Mining and Knowledge Discovery, 6, pp393–423, 2002.
[24] Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. Fifth European Working Session on Learning. Berlin: Springer-Verlag, pp. 164–177.
[25] A.K. JAIN,M.N. MURTY, AND P.J. FLYNN. (1999). Data Clustering: A Review. ACM Computing Surveys, Vol. 31, No. 3, September.
[26] S. Michalski, J. G. Carbonell, and T. M. Mitchell. (1983). Machine Learning: An Artificial Intelligence Approach. Vol. 1. San Mateo, CA: Morgan Kaufmann.
[27] J. Han, M. Kamber. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers.
[28] M.-S. Chen, J. Han and P. S. Yu. (1996). Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6): 866-883.
[29] Gupta, V. Harinarayan, and D. Quass. (1995). Aggregate-Query processing in data warehousing environment. Proc. 21st Int. Conf. Very Large Data Bases. Pages 358-369, Zurich, Switzerland, Sept.
[30] V. Harinarayan, J.D. Ullman, and A. Rajaraman. (1996). Implementing data cubes efficiently. Data Mining and Knowledge Discovery Portland, Oregon, August.
[31] Han and Y. Fu. (1994). Dynamic generation and refinement of concept hierarchies for knowledge discovery in databases. Workshop on Knowledge Discovery in Databases, pages 158-168, Seattle, WA, July.
[32] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Ming, pages 399-421. AAAI/MIT Press.
[33] Jiawei Han’, Yandong Cai, and Nick Cerconet. (1992). Knowledge Discovery in Databases: An Attribute-Oriented Approach. Proceedings of the 18th VLDB Conference Vancouver, British Columbia, Canada 1992.
[34] Heikki Mannila. (1996). Data mining: machine learning, statistics, and databases. In Proceedings of the 8th International Conference on Scientific and statistical Database Management, pages 1-6, Stockholm, Sweden.
[35] MATLAB Help Library.
[36] Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara. (2003). A Survey on Wavelet Applications in Data Mining. SIGKDD Explorations. Volume 4, Issue 2 , PP 49-68.
[37] F. Abramovich, T. Bailey, and T. Sapatinas. (2000). Wavelet analysis and its statistical applications. JRSSD 48, pp1–30.
[38] R. Polikar. The wavelet tutorial. Internet Resources:
http://engineering.rowan.edu/ polikar/ WAVELETS/WTtutorial.html.
[39] Boris Kovalerchuk, Evgenii Vityaev. (2000).DATA MINING IN FINANCE
Advances in Relational and Hybrid Methods. Kluwer Academic Publishers
Published
[40] Ying Yang, Geoffrey I. Webb. Discretization for Data Mining. University of Vermont ; Monash University Clayton Campus.
Reference in Chinese
[6] 李華玉. (1992). 台灣股票資訊內容之研究. 台灣大學會計研究所 碩士論文.
[7] 蕭義展.(2001). 財務報表資訊內涵與股票報酬率的關聯性. 中山大學經濟研究所碩論文
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2005-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明