博碩士論文 92441008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.236.65.63
姓名 許明峰(Ming-Feng Hsu)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱
(Two Essays on Asian Option Valuation with Higher Moments in the Underlying Distribution)
相關論文
★ 所有權結構與資本結構對公司價值影響之研究-以台灣上市電子公司為例★ 巴菲特策略管理思想實踐之探討
★ 台灣水果進入大陸市場進入策略之研究★ 產險業購併標的選擇之研究
★ 專業電子代工廠轉型自有品牌商的策略行為與方向★ 股權集中度與承銷價低估之關係研究
★ 舉債後股利增發宣告之資訊內涵-由營運績效及內部人持股比率角度探討之★ 舉債後股利增發宣告的資訊內涵-由投資活動與系統風險變動的角度探討之
★ 價格動量策略與產業動量策略之實證研究-以台股為例★ 手機產品特性與品牌形象對消費者購買之知覺品質與滿意度及忠誠度之研究
★ 家族企業與會計保守性之關聯性★ Three essays on non-parametric pseudo random disturbance simulations and Monte Carlo approach
★ 綠色能源燈具之應用與跨國品牌通路多角化經營之探討--以A公司為例★ 銀行授信策略與影響授信決策因素之研究
★ 資本結構決定因素之研究--台灣資訊電子業上市公司之實證★ 影響我國銀行衍生性金融商品創新之因素
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的是考量在標的資產之報酬分配具有高階動差的情況下,以數值模型評價亞洲選擇權,分為兩部分,第一部分針對歐式亞洲選擇權評價並與文獻結果做比較分析,第二部分則進一步討論美式亞洲選擇權之評價及其比較結果。
本研究首先以Edgeworth二項樹模型的上下限來評價歐式亞洲選擇權,我們證明,由Edgeworth二項樹模型評價亞洲選擇權的誤差界限是小於Chalasani et al.模型的誤差界限。此法用來評價各種不同偏態與峰態的亞洲外匯選擇權,評價的數值結果顯示,此方法能有效的處理標的資產報酬分配具有高階動差之權證,並且可以提供較過去其他的文獻為佳的選擇權估計值。
本研究接著以一個具有高階動差修正的Edgeworth二項樹模型,評價美式亞洲選擇權。與常態分配之標的資產比較,當時間階段(time steps)數增加時,我們的演算法是與Chalasani et al.一樣精確。若標的資產分配呈現負偏態及高峰態,則我們的權證估計值較Chalasani et al.來的精確,與Hull and White中作為比較基礎的估計值相似。數值分析顯示,在具有高階動差的標的資產分配中,修正之Edgeworth二項樹模型可以快速且精確地評價美式亞洲選擇權。
摘要(英) The purpose of this study is to develop a numerical valuation model for Asian options while considering the higher moments of the underlying asset return distribution. Two issues are analyzed in the dissertation. First one discusses the pricing of European Asian options, and the second one extends the enquiry to American Asian options.
We first apply the Edgeworth binomial model with the lower and upper bounds to calculate the European Asian options. The error bound in our pricing from the Edgeworth binomial model is smaller than that from Chalasani et al. (1998). This method is then used to price the average rate currency options with different skewness and kurtosis. The numerical results show that our approach can effectively deal with the higher moments of the underlying distribution and provide better estimates of option value compared to various studies in literature.
We then develop a modified Edgeworth binomial model with higher moment consideration to price American Asian options. With lognormal underlying distribution for benchmark comparison, our algorithm is as precise as that of Chalasani et al. (1999), especially when the number of the time steps increases. If the underlying distribution displays negative skewness and leptokurtosis as often observed for stock index returns, our estimates are better than those in Chalasani et al. (1999) and very similar to the benchmarks in Hull and White (1993). The numerical analysis shows that our modified Edgeworth binomial models can quickly and accurately value American Asian options with higher moments in their underlying distribution.
關鍵字(中) ★ 高階動差
★ Edgeworth二項樹模型
★ 亞洲選擇權
★ 偏態
★ 峰態
關鍵字(英) ★ Edgeworth bino
★ Kurtosis
★ Asian options
★ Skewness
論文目次 ABSTRACT….……………………………………………..………Ⅲ
ACKNOWLEDGEMENTS……..…………………………………....Ⅶ
CONTENTS…………………………………………….………….IX
LIST OF FIGURES………………………………………………..XI
LIST OF TABLES………………………………………………...XII
Chapter 1. Introduction……………………………………………1
Chapter 2. Pricing European Asian Options with Skewness and Kurtosis in the Underlying Distribution…………… 3
2.1. Introduction to Chapter 2…………………………………3
2.2. Definitions and the Basic Binomial Model………………5
2.3. Edgeworth Binomial Model for Asian Option Valuation.8
2.4. Numerical Results………………………………………. 16
2.4.1. Valuation of European Asian Options under Normal Skewness and Kurtosis……………………………… 16
2.4.2. Valuation of European Asian Options under Various Skewness and Kurtosis……………………………… 19
2.5. Conclusion of Chapter 2…………………………………22
Chapter 3. Pricing American Asian Options with Higher moments in the Underlying Distribution……………………24
3.1. Introduction to Chapter 3…………………………… 24
3.2. Pricing Process of a Binomial Tree………………. 27
3.3. The Edgeworth Binomial Option Pricing Model………28
3.4. Upper Bound and Lower Bound…………………………. 32
3.5. Numerical Results……………………………………… 36
3.5.1. Comparisons of Price Estimates of American Asian Options under Lognormal Distribution…………… 36
3.5.2. Comparisons of Price Estimates of American Asian Options under Distributions with Higher Moments 39
3.6. Conclusion of Chapter 3………………………………. 41
Chapter 4. Conclusion……………………………………………42
References…………………………………………………………..43
Appendix for chapter 2: Analytical explanation for the Proposition……………………………………………. 51
參考文獻 Ahn, D.-H., Boudoukh, J., Richardson, M., & Whitelaw, R. F., (1999). Optimal risk management using options. Journal of Finance, 54(1), 359-375.
Albrecher, H., Dhaene, J., Goovaerts, M., & Schoutens, W. (2005, Spring). Static hedging of Asian options under Lévy models. The Journal of Derivatives, 12, 63-72.
Alziary, B., Decamps, J. & Koehl, P. (1997).A PDE approach to Asian options: analytical and numerical evidence. Journal of Banking and Finance, 21, 613-640.
Amin, K. I. (1993). Jump diffusion option valuation in discrete time. Journal of Finance, 48(5), 1833-1863.
Barraquand, J. & Pudet, T. (1996). Pricing of American path-dependent contingent claims. Mathematical Finance, 6, 17-51.
Black, F. & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637-654.
Bouaziz, L., Briys, E. & Crouhy, M. (1994). The pricing of Forward-Start Asian options. Journal of Banking and Finance, 18, 823-839.
Boyle, P. P. (1977). Options: a Monte Carlo approach. Journal of Financial Economics, 4, 323-338.
Boyle, P., Broadie, M., & Glasserman, P. (1997). Monte Carlo method for security pricing. Journal of Economic Dynamic & Control, 21, 1267-1321.
Boyle, P. & Potapchik, A. (2007). Prices and sensitivities of Asian options: a survey. Insurance: Mathematics & Economics in press.
Broadie, M. & Glasserman, P. (1996). Estimating security price derivatives using simulation. Management Science, 42(2), 269-285.
Chacko, G. & Das, S. R. (1997). Average interest. Working Paper, Harvard Business School.
Chalasani, P., Jha, S., & Varikooty, A. (1998). Accurate approximations for European Asian options. Journal of Computational Finance, 1(4), 11-29.
Chalasani, P., Jha, S., Egriboyun, F., & Varikooty, A. (1999). A refined binomial lattice for pricing American Asian options. Review of Derivatives Research, 3(1), 85-105.
Chang, C. C. & Fu, H. C. (2001). A binomial options pricing model under stochastic volatility and jump. CJAS, 18(3), 192-203.
Corrado, J. C. & Su, T. (1997). Implied volatility skews and stock index skewness and kurtosis implied by S&P 500 index option prices. Journal of Derivatives, 4(4), 8-19.
Costabile, M., Massabo, I. & Russo, E. (2006). An adjusted binomial model for pricing Asian options. Review Quantitative Finance & Accounting, 27(3), 285-296.
Cox, J. C., Ross, S. A. & Rubinstein, M. (1979). Option pricing: a simplified approach. Journal of Financial Economics, 7, 229-263.
Curran, M. (1994). Valuing Asian and portfolio options by conditioning on the geometric mean. Management Science, 40, 1705-1711.
Dai, T. -S., & Lyuu, Y. -D. (2002). Efficient, exact algorithms for Asian options with multiresolution lattices. Review of Derivatives Research, 5, 181-203.
Das, S. R. (2002). Random lattices for option pricing problems in finance. Working Paper, Leavey School of Business, Santa Clara University.
Dewynne, J. & Wilmott, P. (1993). Partial to the exotic. Risk, 6, 38-46.
(1995). Asian options as linear complementarity problems: analysis and finite-difference solutions. Advances in Futures and Options Research, 8, 145-173.
Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. & Vyncke, D. (2002a). The concept of comonotonicity in actuarial science and finance: theory. Insurance: Mathematics & Economics, 31, 3-33.
(2002b). The concept of comonotonicity in actuarial science and finance: applications. Insurance: Mathematics & Economics, 31, 133-161.
D’Halluin, Y., Forsyth, P. & Labahn, P. (2005). A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM Journal of Scientific Computing, 27(1), 315-345.
Dufresne, D. (2000). Laguerre series for Asian and other options. Mathematical Finance, 10(4), 407-428.
Dutta, K. K., & Babbel, D. F. (2005). Extracting probabilistic information from the prices of interest rate options: tests of distributional assumptions. Journal of Business, 78, 841–870.
Engle, R. F. & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. Journal of Finance, 48(5), 1749-1778.
Fournié, E., Lasry, J. -M., Lebuchoux, J., Lions, P. -L. & Touzi, N. (1999). Applications of Malliavin calculus to Monte Carlo methods in finance. Finance & Stochastics, 3391-412.
Fournié, E., Lasry, J. -M., Lebuchoux, J. & Lions, P. -L. (2001). Applications of Malliavin calculus to Monte Carlo methods in finance Π. Finance & Stochastics, 5, 201-236.
Fu, M. C., Madan, D. B. & Wang, T. (1999). Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform inversion methods. Journal of Computational Finance, 2, 49-74.
Fusai, G. & Tagliani, A. (2002). An accurate valuation of Asian options using moments. International Journal of Theoretical and Applied Finance, 5, 147-169.
Geman, H. & Yor, M. (1993). Bessel processes, Asian options and perpetuities. Mathematical Finance, 3, 349-375.
Grant, D., Vora, G. & Weeks, D. (1997). Path-dependent options: extending the Monte Carlo simulation approach. Management Science, 43(11), 1589-1602.
Haykov, J. (1993). A better control variate for pricing standard Asian options. Journal of Financial Engineering, 2, 207-216.
Hilliard, J. E. & Schwartz, A. L. (1996, Fall). Binomial option pricing under stochastic volatility and correlated state variable. Journal of Derivatives, 23-39.
Hull, J. & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573-592.
(1993, Fall). Efficient procedures for valuing European and American path-dependent options. The Journal of Derivatives, 1, 21-31.
(1998). Value at risk when daily changes in market variables are not normally distributed. The Journal of Derivatives, 5(3), 9-19.
Hu, J. W. S. & Yu, C. C. (2000). A comparative analysis between Asian currency options and standard currency options. International Journal of Management, 17, 206-217.
Ju, N. (2002). Pricing Asian and basket options via Taylor expansion. Journal of Computational Finance, 5(3), 1-33.
Kaas, R., Dhaene, J. & Goovaerts, M. J. (2000). Upper and lower bounds for sums of random variables. Insurance: Mathematics & Economics, 27, 151-168.
Kearns, P. & Pagan, A. (1997). Estimating the density tail index for financial time series. The Review of Economics and Statistics, 79, 171-175.
Kemna, A., & Vorst, A. (1990). A pricing method for options based on average asset values. Journal of Banking and Finance, 14, 113-129.
Kim, T. -H. & White, H. (2003). On more robust estimation of skewness and kurtosis: simulation and application to the S&P 500 Index. Working Paper, Department of Economics, UC San Diego.
Klassen, T. R. (2001). Simple, fast, and flexible pricing of Asian options. Journal of Computational Finance, 4, 89-124.
Kramkov, D. O. & Mordecky, E. (1994). Integral option. Theory of Probability and Its Applications, 39, 162-172.
L’Ecuyer, P. & Perron, G. (1994). On the convergence rates of IPA and FDC derivative estimators. Operations Research, 42(4), 643-656.
Lévy, E. (1992). Pricing European average rate currency options. Journal of International Money & Finance, 11, 474-491.
Lévy, E. & Turnbull, S. (1992). Average intelligence. RISK, 5, 53-58.
Linetsky, V. (2004). Spectral expansions for Asian (average price) options. Operations Research, 52(6), 856-867.
Milevsky, M. A. & Posner, S. E. (1998a). A closed-form approximation for valuing basket options. The Journal of Derivatives, 5(4), 54-61.
(1998b). Asian options, the sum of lognormals, and the reciprocal Gamma distribution. Journal of Financial & Quantitative Analysis, 33, 409-422.
Neave, E. H. & Ye, G. L. (2003). Pricing Asian options in the framework of the binomial model: a quick algorithm. Derivative Use, Trading & Regulation, 9(3), 203-216.
Nielsen, J. A. & Sandmann, K. (1996). The pricing of Asian options under stochastic interest rates. Applied Mathematical Finance, 3,209-236.
(2002). Pricing of Asian exchange rate options under stochastic interest rates as a sum of options. Finance and Stochastics, 6, 355-370.
(2003). Pricing bounds on Asian options. Journal of Financial and Quantitative Analysis, 38, 449-473.
Posner, S. E. & Milevsky, M. A. (1998). Valuing exotic options by approximating the SPD with higher moments. The Journal of Financial Engineering, 7(2), 109-125.
Reynaerts, H., Vanmaele, M., Dhaene, J. & Deelstra, G. (2006). Bounds for the price of a European-style Asian option in a binary tree model. European Journal of Operational Research, 168, 322-332.
Rogers, L. C. G. & Shi, Z. (1995). The value of an asian option. Journal of Applied Probability, 32, 1077-1088.
Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 49(3), 771-818.
(1998). Edgeworth binomial trees. The Journal of Derivatives, 5(3), 20-27.
Shaw, W. T. (2002). Pricing Asian options by contour integration, including asymptotic methods for low volatility. Working Paper, Mathematical Institute.
Su, Y. & Fu, M. C. (2000). Importance sampling in derivative securities pricing. In: J. A. Joines, R. R. Barton, K. Kang, P. A. Fishwick(Eds.), Proceedings of the 2000 Winter Simulation Conference, 587-596.
Thompson, G. W. P. (2000). Fast narrow bounds on the value of Asian options. Working Paper, Centre for Financial Research, Judge Institute of Management, University of Cambridge.
Tucker, A. L. & Pond, L. (1988). The probability distribution of foreign exchange price changes: tests of candidate processes. The Review of Economics and Statistics, 70, 638-647.
Turnbull, S. & Wakeman, L. (1991, September). A quick algorithm for pricing European average options. Journal of Financial & Quantitative Analysis, 26, 377-389.
Vázquez-Abad, F. J. & Dufresne, D. (1998). Accelerated simulation for pricing Asian options. In: D. J. Medeiros, E. F. Watson, J. S. Carson, M. S. Manivannan(Eds.), Proceedings of the 1998 Winter Simulation Conference, 1493-1500.
Večeř, J. (2001). A new PDE approach for pricing arithmetic average Asian options. Journal of Computational Finance, 4, 105-113.
Vorst, T. (1992). Prices and hedge ratios of average exchange rate options. International Review of Financial Analysis, 1, 179-193.
Zhang, J. E. (2001). A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options. Journal of Computational Finance, 5, 59-79.
(2003). Pricing continuously sampled Asian options with perturbation method. Journal of Futures Markets, 23(6), 535-560.
指導教授 王克陸、羅庚辛
(Kehluh Wang、Keng-Hsin Lo)
審核日期 2007-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明