參考文獻 |
Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases. 487-499.
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD Int'l Conference on Management of Data, 94-105.
Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander, J. (1999). OPTICS: Ordering Points to Identify the Clustering Structure. Proceedings of ACM SIGMOD International Conference on Management of Data. 322-331.
Basak, J. and Krishnapuram, R. (2005). Interpretable Hierarchical Clustering by Constructing an Unsupervised Decision Tree. IEEE Transactions on Knowledge and Data Engineering, 17(1), 121- 132.
Berkhin, P., (2002). Survey of clustering data mining techniques. Technical Report, CA: Accrue Software.
Berson, A., Smith, S., and Thearling, K. (2000). Building data mining applications for CRM. McGraw-Hill New York.
Bezdek, J., (1981). Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York.
Bezdek, J.C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences Vol. 10, Issue 2-3, 191-203.
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees. London: Chapman and Hall.
Chan, P.K., Fan, W., Prodromidis, A.L. and Stolfo, S.J. (1999). Distributed data mining in credit card fraud detection. Intelligent Systems and Their Applications, IEEE (IEEE Intelligent Systems). 14(6). 67-74.
Chen, M.S., Han, J., and Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering. 8(6). 866-883.
Chen, N., Chen, A. and Zhou, L. Lu. (2001). A graph-based clustering algorithm in large transaction databases. Intelligent Data Analysis. 5(4). 327-338.
Chen, Y.L., Hsu, C.L., and Chou, S.C. (2003). Constructing a multi-valued and multi-labeled decision tree. Expert Systems with Applications, 25 (2), 199-209.
Chen, Y.L., Hsu, W.H., Lee, Y.H. (2006). TASC: two-attribute-set clustering through decision tree construction, European Journal of Operational Research 174, 930-944
Chen, Y.L., and Hu H.L., (2006). An overlapping cluster algorithm to provide non-exhaustive clustering. European Journal of Operational Research, vol. 173, 762-780.
Cheng, C.H., Fu, A.W., and Zhang, Y., (1999). Entropy-based subspace clustering for mining numerical data. Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 84-93.
Dunn, J, (1973). A fuzzy relative of the Isodata process and its use in detecting compact, well-separated clusters. Journal of Cybernetics, vol. 3(3), 32-57
Ester, M., Kriegel, H.P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. 226-231
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54.
Fisher, D.H. (1987). Knowledge Acquisition via Incremental Conceptual Clustering, Machine Learning. 2, 139-172.
Friedman, J.H., and Rafsky, L.C. (1979). Multivariate generalizations of the Wald–Wolfowitz and Smirnov two-sample tests. The Annals of Statistics, 17, 697–717.
Friedman, J.H., and Rafsky, L.C. (1981). Graphics for the multivariate two-sample problem. Journal of American Statistics Association, 76, 277–293.
Friedman, J.H., and Rafsky, L.C. (1983). Graph-theoretic measures of multivariate association and prediction. The Annals of Statistics, 11(2), 377–391.
Friedman, J.H. and Fisher, N.I. (1999). Bump Hunting in High-dimensional Data, Statistics and Computing, Vol. 9, Issue 2, 123-143.
Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. (1999). BOAT – optimistic decision tree construction. Proceedings of ACM SIGMOD International Conference on Management of Data. 169-180.
Giannotti, F., Gozzi, C., and Manco, G.., (2001). Clustering Transactional Data. Proceedings of SEBD-01 National Conference on Advanced Database Systems. 163-176.
Giudici, P. (2003) Applied data mining: statistical methods for business and industry. Wiley.
Gonzalez-Barrios, J.M., and Quiroz, A.J., (2003). A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree. Statistics & Probability Letters, 62, 23-24.
Grabmeier, J., and Rudolph, A. (2002). Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 6(4), 303-360.
Guha, S., and Rastogi, R., (2000) ROCK: A Clustering Algorithm for Categorical Attributes. Information System Journal, 25 (5), 345-366.
Guha, S., Rastogi, R., and Shim, K. (1998). CURE: An efficient clustering algorithm for large databases. In: Proceedings of the ACM SIGMOD Conference, 73-84.
Guha, S., Rastogi, R., and Shim, K., (2001). CURE: an efficient clustering algorithm for large databases. Information Systems, 26(1), 35-58.
Guo, L., Zhang, M., Sun, L., and Wang, Z., (2006). Fuzzy clustering model of CRM in securities trade. Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA). 6052-6054.
Halkidi, M., Batistakis, Y., and Vazirgiannis, M., (2001). Clustering algorithms and validity measures. Proceedings of the Thirteenth International Conference on Scientific and Statistical Database Management. 3 -22.
Han, J., and Kamber, M., (2006). Data Mining: Concepts and Techniques., 2nd edition, Morgan Kaufmann.
Hsu, W.H., Jao, J.A. and Chen, Y.L. (2005). Discovering conjecturable rules through tree-based clustering analysis, Experts Systems with Applications 29, 493-505.
Jain, A.K., Murty, M.N., and Flynn, P.J., (1999). Data clustering: a review. ACM Computing Surveys, 31(3): 264-323.
Kantardzic, M., (2003). Data Mining: Concepts, Models, Methods, and Algorithms. NJ: John Wiley & Sons.
Karypis, G., Han, E.H., and Kumar, V., (1999). Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer, (32) 68-74.
Kaufman, L., and Rousseeuw, P.J. (1990). Finding Groups in Data: an Introduction to Cluster Analysis. NJ: John Wiley & Sons.
Keim, D., and Hinneburg, A. (1999). Clustering techniques for large data sets: from the past to the future. KDD Tutorial Notes 1999: 141-181.
Klawonn, F., and Kruse, R. (1997). Constructing a fuzzy controller from data. Fuzzy Sets and Systems 85. 177-193.
Lenard, M. J., Alam, P., and Booth, D., (2000). An analysis of fuzzy clustering and a hybrid model for the auditor’s going concern assessment. Decision Sciences, vol. 31(4), 861-884.
Liu, B., Xia, Y., and Yu, P., (2000). Clustering through decision tree construction. Proceedings of Ninth International Conference on Information and Knowledge Management. 290-297.
MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 281-297.
Mattison, R. (1997). Data warehousing and data mining for telecommunications. Artech House, Inc.
Mehta, M., Rissanen, J., and Agrawal, R. (1995). MDL-based decision tree pruning. Proceedings of the First International Conference on Knowledge Discovery and Data Mining. 216-221.
Ng, R., and Han, J. (2002). CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering. 14(5). 1003-1016.
Ozer, M., (2001). User segmentation of online music services using fuzzy clustering. Omega: the International Journal of Management Science, vol. 29, 193-206.
Ozer, M., (2005). Fuzzy c-means clustering and Internet portals: a case study. European Journal of Operational Research, vol. 164, 696-714.
Quinlan, J.R., (1986). Induction of decision trees. Machine Learning. 1, 81-106.
Quinlan, J.R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies. 27(3). 221-234.
Quinlan, J.R., (1993). C4.5: Programs for Machine Learning. CA: Morgan Kaufmann.
Quinlan, J.R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research, 4, 77-90.
Ralambondrainy, H., (1995). A Conceptual Version of the k-means Algorithm, Pattern Recognition Letters, 16, pp.1147-1157.
Rastogi, R. and Shim, K. (1998). PUBLIC: A decision tree classifier that integrates building and pruning. Proc. VLDB-98, pp. 404-415.
Ruggieri, S. (2002). Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 14 (2), 438-444.
Salton, G., (1989). Automatic text processing: the transformation, analysis and retrieval of information by computer, PA: Addison Wesley.
Shafer, J., Agrawal, R., and Mehta, M. (1996). SPRINT: A scalable parallel classifier for data mining. Proceedings of 22nd International Conference on Very Large Data Bases. 544-555.
Shoji, H., Sun, X., and Shusaku, T. (2004). Comparison of clustering methods for clinical databases, Information Sciences, Vol.159, Issue: 3-4, 155-165.
Spangler, W.E., May, J.H., and Vargas, L.G., (1999). Choosing data-mining methods for multiple classification: representational and performance measurement implications for decision support. Journal of Management Information Systems, vol. 16(1), 37-62.
Sullivan, R., Timmermann, A., and White, H. (1998). The dangers of data-driven inference: the case of calendar effects in stock returns. LSE Financial Markets Group.
Theodoridis, S. & Koutroumbas, K. (2006). Pattern Recognition 3rd Ed., 635.
Wang, W., Yang, J., and Muntz, R. (1997). STING: A Statistical Information Grid Approach to Spatial Data Mining. Proceedings of 23rd International Conference on Very Large Data Bases. 186-195.
Wu, K.L. and Yang, M.S. (2002). Alternative c-means clustering algorithms, Pattern Recognition 35, 2267–2278.
Yao, Y.Y., (1998). A comparative study of fuzzy sets and rough sets. Journal of Information Sciences 109, 227-242.
Ye, N. and Li, X. (2002). A scalable, incremental learning algorithm for classification problems, Computers & Industrial Engineering Journal, 43(4): 677-692.
Zhang, T., Ramakrishnan, R., and Livny, M. (1997), BIRCH: A New Data Clustering Algorithm and Its Applications. Data Mining and Knowledge Discovery, 1, 141–182.
|