博碩士論文 92521004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.230.173.188
姓名 林思汎(Si-Fan Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以正交分頻多工系統之同步的高效能內插法技術
(Efficient Implementation of Interpolation Technique for Synchronization of OFDM Systems)
相關論文
★ 用於類比/混和訊號積體電路可靠度增強的加壓測試★ 應用於電容陣列區塊之維持比值良率的通道繞線法
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 高速無進位除法器設計
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 正交分頻多工通訊中之盲目頻域等化器
★ 增強CMOS鎖相迴路可靠度★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高速的數位通訊因為它可以改善頻帶上暫時性的強烈突波和窄頻干擾,所以運用是非常廣泛,而其中又以正交分頻多工(OFDM)技術更為。
正交分頻多工(OFDM)技術因為可以改善頻帶上暫時性的強烈突波和窄頻干擾,所以在高速的數位通訊上運用是非常廣泛。而OFDM最主要的優點是可以增強基本信號的能量進而克服通道上的衰減。
在數位通訊中,通道上的信號是由調變過的連續二進制信號所發送出去。而接收端則是經由取樣和量化之後,所解調變過的離散衰減信號。所以在接收端中最主要的關鍵就是讓時間同步,這樣才會使得接收端的接收效果達到最好。而時間同步所指的就是,在進來的資料信號取樣時間必須同步。
非同步的取樣信號是這個研究的主要範本。一般來說,接收端是使用固定的取樣頻率,但是由傳送端和接收端的資料取樣時間是不一樣的,這樣會導致非同步的情形發生。所以,在取樣後就必須做內插技術的補償。而內插技術通常是使用Lagrange的內插法,它的方式是改變有限脈衝頻率響應濾波器的係數,進而可以自動調整取樣後的資料。
這篇論文是以 Farrow 的架構來實現 cubic 和 quintic 兩種內插法的濾波器。在從Farrow 的架構來發展一個新的架構,它和傳統的 cubic Farrow 架構來做比較,在硬體方面是減少23%。
摘要(英) OFDM technique has been widely implemented in high-speed digital communications to increase the robustness against frequency selective fading or narrowband interface. The major advantage of OFDM is the ability to enhance the basic signal using approaches that can overcome channel impairments.
In digital communication, binary information is converted by means of a modulator into a continuous-time signal which is sent over the transmission channel. A digital receiver is to extract the information sequence from a discrete signal obtained after sampling and quantizing the distorted signal presented to the demodulator. At the receiver, accurate timing recovery is critical to obtained performance close to that of the optimal receiver. Timing in a data receiver must be synchronized to the symbols of the incoming data signals.
This study considers a non-synchronized sampling scheme. The received signal is performed by a fixed sampling clock; the samples are not synchronized to the incoming data symbols. Timing adjustment is done after sampling using interpolation. Farrow structure has been commonly used to efficiently implement the Lagrange interpolation for timing adjustment.
This thesis presents the efficient implementation of the Farrow structure for cubic and quintic interpolations. Results show that the developed cubic Farrow structure achieves a hardware cost reduction by 23% from the conventional one. The design concept can be readily extended to the Farrow structures for higher order interpolations.
關鍵字(中) ★ 內插法技術
★ 正交分頻多工系統
★ 同步
關鍵字(英) ★ Synchronization
★ OFDM
★ Interpolation
論文目次 Abstract
Chapter 1 Introduction...................................................................................................1
Chapter 2 Background...................................................................................................9
2.1 OFDM..............................................................................................................9
2.2 Synchronization with OFDM Receiver..........................................................16
2.3 Interpolation...................................................................................................19
Chapter 3 Development................................................................................................26
3.1 Improved Farrow Structure for Cubic Interpolation......................................27
3.2 Low-cost Farrow Structure for Quintic Interpolation....................................36
3.3 Performance Evaluation.................................................................................39
Chapter 4 Conclusions and Future Work.....................................................................44
References....................................................................................................................46
參考文獻 [1] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
[2] W.Y. Zou and Y. Wu, “COFDM: an Overview,” IEEE Trans. on Broadcasting, pp.1-8, Mar. 1995.
[3] I. Kalet, “The Multitone Channel,” IEEE Trans. on Communications, pp.119- 124, Feb. 1989.
[4] P.S. Chow, J.C. Tu, and J. Cioffi, “Performance Evaluation of a Multichannel Transceiver System for ADSL and VHDSL Services,” IEEE Journal on Communications, pp.909-919, Aug. 1991.
[4] N.Al. Dhahir, and J.M. Cioffi, “Optimum Finite-Length Equalization for Multicarrier Transceivers,” IEEE Trans. on Communications, pp.56-64, Jan. 1996.
[5] T. Pollet and M. Peeters, “Synchronization with DMT Modulation,” IEEE Communication Magazine, pp.80-86, Apr. 1999.
[6] Charles K. Summers, ADSL Standard, Implementation, and Architecture, U.S. CRC Press LLC, 1999.
[7] European Telecommunication Standard ETS 300 744, “Digital Broadcasting Systems for Television, Sound and Data Services; Framing structure, channel coding and modulation for digital terrestrial television,” ETSI, 1997.
[8] C.L. Wey, “SoC Design of Digital Video Broadcasting Receiver and its Platform Development,” Technical Report to Research Project of National Science Council, May 2005.
[9] V. Tuukkanen, J. Vesma, and M. Renfors, “Combined Interpolation and Maximum Likelihood Symbol Timing Recovery in Digital Receivers,” Proceedings of IEEE International Conference on Universal Personal Communication, pp. 698-702, Oct. 1997.
[10] J. Vesma, M. Renfors, and J. Rinne, “Comparison of Efficient Interpolation Techniques for Symbol Timing Recovery,” Proceedings of IEEE Globecom 96, London, UK, pp.953-957, Nov. 1996.
[11] A.S.H. Ghadam and M. Renfors, “Farrow Structure Interpolators Based on Even Order Shaped Lagrange Polynomial,” Proceedings of International Symp. on Image and Signal Processing and Analysis, pp.745-748, Sep. 2003
[12] F.M. Gardner, “Interpolation in Digital Modems -- Part I: Fundamentals,” IEEE Trans. on Communications, pp.501-507, Mar. 1993.
[13] L. Eruo, F.M. Gardner, and R.A. Harris, “Interpolation in Digital Modems -- Part II: Implementation and Performance,” IEEE Trans. on Communications, pp.998-1008, June 1993.
[14] Min-Young Park and Weon-Cheol Lee, “A Demapping Method Using the Pilots in COFDM Systems,” IEEE Trans. on Consumer Electronics, vol.44, No.3, pp.1150-1153, Aug. 1998.
[15] P.K. Frenger and N. A. B. Sevensson, “Parallel Combinatory OFDM Signaling,” Electronic Letters, vol. 47, pp. 558-567, Apr. 1999.
[16] J.W. Coolkey and J. W. Tukey, “An Algorithm for the Machine Computation of Complex Fourier Transform Series,” Mathematics of computation, vol. 19, pp. 297-301, Apr. 1965.
[17] T. Pollet, P. Spruyt, and M. Moeneclaey, “The BER Performance of OFDM Systems Using Non-Synchronized Sampling,” Proceedings of Globecom 94, San Francisco, pp. 253-57, Dec. 1994.
[18] T.N. Zogakis and J.M. Cioffi, “The Effect of Timing Jitter on the Performance of a Discrete Multitone Signal,” IEEE Trans. Communications, vol. 44, pp. 799-808, July 1996.
[19] F.B. Hildebrand, Introduction to Numerical Analysis. New York: McGraw-Hill, Section 2.5, 1956.
[20] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. Cambridge, England: Cambridge University Press, Section 3.5, 1986.
[21] M. Abramowitz and L.A. Stegun, Eds., Handbook of Mathematical Functions. Nat. Bur. Stds., Appl. Math. Series, vol. 55, pp. 878, June 1964.
指導教授 魏慶隆、薛木添
(Chin-Long Wey、Muh-Tian Shiue)
審核日期 2005-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明