博碩士論文 92521033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.231.247.139
姓名 王又君(You-Jiun Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 奈米CMOS晶片內序列傳輸之送器
(Nanometer CMOS On Chip Serial Link Transmitter)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作
★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作★ 應用於通訊系統的內嵌式數位訊號處理器架構
★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計
★ 應用於通訊系統中數位信號處理器之模組設計★ 應用於藍芽系統之CMOS射頻前端電路設計
★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組
★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計★ 適用於通訊系統之內嵌式數位訊號處理器
★ 雷射二極體驅動電路★ 適用於通訊系統的內嵌式數位信號模組設計
★ 適用在通訊應用之可參數化內嵌式數位信號處理器核心★ 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了高度整合不同功能的模組,系統單晶片技術日趨重要。但傳遞模組間訊息的晶片內部拉線,卻因延遲過長,面積過大以及高複雜度而限制了晶片的效能,尤其以全域性晶片內部拉線更為嚴重。
因此,在此論文中,我們首先根據不同製程下的晶片內部拉線,分析其特性和趨勢,以期在配合電路設計之需要下,能建立較精準的拉線模型。另外,我們也提出應用在晶片內部的序列化傳輸架構,配合所分析的拉線模型,我們設計出一序列化收發器及比較用的一平行化收發器。採用序列化架構的好處是可減少拉線面積及複雜度但不犧牲電路的操作速度。
我們採用台積電130微米 1P8M CMOS 製程,收發器的操作速度分別是5 Gbps 和 4 Gbps,而功率消耗在每條路徑下為0.8 mW 和 2.7 mW,而在同樣的操作速度下,序列化架構拉線面積只有平行化架構拉線面積的一半。
摘要(英) Due to the ability of integration many modules with different functions, the system-on-chip is becoming a very interesting solution system method. However, on-chip interconnects that transmit signals between inter-modules limit the performance of chip due to long wire delay, large area, large power consumption and high interconnect complexity. It is especially serious in global on-chip interconnect.
Therefore, in this thesis, we firstly analyze characteristics and trends of the on-chip interconnect with scaling technology nodes. In terms of these analyses, we can establish more accurate interconnect models and it is useful in designing circuits for interconnetcs. Besides, we use serial link technique in on-chip application. With the interconnects models, we design a serial transceiver and a parallel transceiver for comparison. The advantages of serial transceiver are to reduce the interconnect area, reduce interconnect complexity without sacrificing the operational speed of system.
We adopt tsmc 0.13 um 1P8M CMOS process to implement our design, and the operational speed are 5 Gbps and 4 Gbps respectively. The power consumption per channel are 0.8 mW and 2.7 mW respectively, and the interconnect area of serial transceiver is half of parallel one at same operational speed.
關鍵字(中) ★ 傳送器
★ 序列傳輸
★ 晶片內
關鍵字(英) ★ serial link
★ transmitter
★ on chip
論文目次 Chapter 1 Introduction ............................................1
1.1 Introduction to System On Chip (SoC) and Network On Chip (NoC)....1
1.2 Motivation and Goals..............................................3
1.2.1 On-chip interconnects................................................3
1.2.2 High-Speed Serial Link Transmitter...................................5
1.3 Thesis Organization...............................................6
Chapter 2 On-Chip Interconnect Analysis............................7
2.1 Background........................................................7
2.1.1 Logic and Wire Delay ................................................9
2.1.2 Insuctance Effects in RLC Interconnect..............................11
2.1.3 Interconenct Model from Berkelry....................................18
2.2 Model of On-Chip Interconnects...................................20
2.2.1 Interconnect Analysis of ITRS Roadmap for Technology Nodes..........20
2.2.2 Channel Characteristics for C foundry and D foundry.................33
2.3 Summary..........................................................43
Chapter 3 On-Chip Transceiver System Overview .....................44
3.1 System Architecture..............................................44
3.1.1 Without Serdes Transceiver (Parallel Version).......................45
3.1.2 With Serdes Transceiver (Serial Version)............................48
3.2 Signaling and Inteference........................................52
3.2.1 Differetial vs. Singled-Ended.......................................52
3.2.2 Reflection..........................................................54
3.2.3 Cross (Couple) Noise................................................55
3.3 Clock Source.....................................................56
3.3.1 VCO.................................................................56
3.3.2 QCG.................................................................57
3.4 Summary..........................................................58
Chapter 4 On-Chip Transmitter Design..............................59
4.1 Architecture.....................................................59
4.2 Circuits Implementation..........................................61
4.2.1 PRBS Encoder........................................................61
4.2.2 Data Synchronizer...................................................63
4.2.3 Parallel-In-Serial-Out (Serializer).................................64
4.2.4 Output Driver.......................................................66
4.3 Pre-emphasis.....................................................67
4.4 Simulation Results...............................................72
4.4.1 Timing Waveform and Eye Diagram.....................................72
4.4.2 Power Analysis......................................................76
4.4.3 Chip Summary and Comparisons........................................77
4.5 Consideration of Cross (Couple) Noise............................79
4.6 Summary..........................................................81
Chapter 5 Experimental Results...................................82
5.1 Layout Consideration.............................................82
5.2 Measurement Consideration........................................84
5.3 Summary..........................................................84
Chapter 6 Conclusions.............................................86
Bibliography..............................................................88
參考文獻 [1] S. Kumar, et. al., “A network on chip architecture and design methodology,” in Proc. of IEEE Computer Society Annual Symposium on VLSI, Apr. 25-26 2002.
[2] G. de Micheli, and L. Benini, “Networks on chip: a new paradigm for systems on chip design,” Conf. design, automation and test in Europe, Mar. 04-08, 2002, p.418.
[3] International Technology Roadmap for Semiconductors (ITRS): Interconnect, Semiconductor Industry Assoc., San Jose, CA, Apr. 25-28 2001, pp. 1-29.
[4] A. B. Kahng, “Overview of the international technology roadmap for semiconductors (ITRS), 2001ed.,” UC San Diego CSE/ECE Depts., June 19, 2002, pp. 1-114.
[5] R. Farjad, C. K. Yang, M. Horowitz, and T. Lee, “A 0.4-μm CMOS 10-Gb/s 4 PAM serial link pre-emphasis transmitter,” VLSI Symposium, June 11-13 1998, pp.198-199.
[6] A. Naeemi, R. Venkatesan, and J. D. Meindl, “Optimal global interconnects for GSI,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 980-987, Apr. 2003.
[7] Y. I. Ismail, E. G. Friedman, and J. L. Neves, “Figures of merit to characterize the importance of on-chip inductance,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 7, no. 4, pp. 442 - 449, Dec. 1999.
[8] http://www-device.eecs.berkeley.edu/~ptm/interconnect.html, the predictive technology model of the Dept. of EECS, University of California, at Berkeley.
[9] M. L. Mui, K. Banerjee, and A. mehrotra, “A global interconnect optimization scheme for nanometer scale VLSI with implications for latency, bandwidth and power dissipation,” IEEE Trans. Electron Devices, vol. 51, issue. 2, pp. 195-203, Feb. 2004.
[10] TSMC 0.13UM LOGIC 1P8M SALICIDE 1.2V/2.5V FSG IMD manual.
[11] UMC 0.13um Logic and Mixed-Mode 1P8M FSG Process manual.
[12] IEEE Std 1394b-2000: IEEE standard for a high perf.
[13] C. N. Chen, “8Gbps serial link transmitter with adaptive termination resistors and pre-emphasis,” M. S. dissertation, Dept. Elec. Eng., National Central University , Taiwan, June 2004.
[14] M. T. Wong, W.Z. Chen, “A 2.5 Gbps CMOS data serializer,” IEEE Conf. Asia-Pacific, Aug. 6-8 2002, pp. 73-76,.
[15] L. Luo, J. Wilson, S. Mick, J. Xu, P. Franzon, and L. Zhang, “3Gb/s AC-coupled chip-to-chip communication using a low-swing pulse receiver,” IEEE International Solid-State Circuits Conference (ISSCC), Feb. 6-10 2005.
[16] A. Fiedler, R. Mactaggart, et al., “A 1.0625Gbps transceiver with 2x -oversampling and transmit signal pre-emphasis,” in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), 1997, pp. 238-239.
[17] F.R. Ramin, et al., “A 0.4-μm CMOS 10-Gb/s 4-PAM pre-emphasis serial link transmitter,” IEEE J. Solid-state Circuits, vol.37, pp. 580-585, May 1999.
[18] L. Zhang, J. Wilson, R. Bashirullah, and P. Franzon, “A 2Gb/s/line low power on-chip bus circuit using driver pre-emphasis,” presented at Dept. Elec. Eng., North Carolina State University and University of Florida, 2004.
[19] K. Y. Yun, P. A. Beerel, and J. Arceo, “High-performance two phase micro pipeline building blocks: double edge-triggered latches and burst-mode select and toggle circuits,” IEE Proc., Circuits, Devices Syst., vol. 143, no. 5, pp. 282-288, 1996.
[20] K. Lee, S. Lee, and S. Kim, “A 51mW 1.6GHz on-chip network for low-power heterogeneous SoC platform,” IEEE International Solid-State Circuits Conference (ISSCC), vol. 1, 2004, pp. 152 -518.
[21] J. H. Huang, “Phase-locked loop based multi-phase clock generator”, M. S. dissertation, Dept. Elec. Eng., National Central University , Taiwan, July 2005.
指導教授 周世傑、鄭國興
(Shyh-Jye Jou、Kuo-Hsing Cheng)
審核日期 2005-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明